
J COMMODORE 64
LJ-, CP/M*

1

1
OPERATING SYSTEM

1

USER'S

i GUIDE

r Cscommodore
COMPUTER



USERS MANUAL STATEMENT
"This equipment generates and uses radio frequency energy and if not

installed and used properly, that is, in strict accordance with the

manufacturer's instructions, may cause interference to radio and

television reception. It has been type tested and found to comply with

the limits for a Class B computing device in accordance with the

specifications in Subpart J of Part 15 of FCC rules, which are designed

to provide reasonable protection against such interference in a

residential installation. However, there is no guarantee that

interference will not occur in a particular installation. If this equipment

does cause interference to radio or television reception, which can be

determined by turning the equipment off and on, the user is

encouraged to try to correct the interference by one or more of the

following measures:

— reorient the receiving antenna

— relocate the computer with respect to the receiver

— move the computer away from the receiver

— plug the computer into a different outlet so that computer and

receiver are on different branch circuits.

"If necessary, the user should consult the dealer or an experienced

radio/television technician for additional suggestions. The user may
find the following booklet prepared by the Federal Communications

Commission helpful: How to Identify and Resolve Radio-TV

Interference Problems.' This booklet is available from the U.S.

Government Printing Office, Washington, D.C. 20402, Stock No.

004-000-00345-4."



COMMO
CP/M® O TING

USER'S
GUIDE

Published by
Commodore Business Machines, Ine.

and
Howard W. Sams & Co., Inc.



First Edition-1983
First Printing- 1983

Copyright © 1983 by Commodore Business

Machines, Inc.

All rights reserved.

CP/M is a registered trademark of Digital Research

This manual is copyrighted and contains proprietary

information. No part of this publication may be

reproduced, stored In a retrieval system, or

transmitted in any form or by any means, electronic,

mechanical, photocopying, recording, or otherwise,

without the prior written permission of

COMMODORE BUSINESS MACHINES. Inc.

Printed in the United States of America



TABLE
OF

CONTENTS
1. INTRODUCTION TO

CP/M ON YOUR
COMMODORE 64 7

• 1.1 Overview of CP/M on Your

Commodore 64 9

• 1.2 How To Use This Manual 10

• 1.3 Digital Research License Information 12

1.3.1 Digital Research License

Agreement 12

• 1.4 Registration Information 15

• 1.5 Warranty and Service Information 15

• 1.6 Get More out of Your Commodore
Computer I 6

1.6.1 Power/Play: The Home Computer

Magazine 16

1.6.2 Commodore: The Microcomputer

Magazine 16

1.6.3 Commodore Information Network:

The Paperless User Magazine 17

2. SETTING UP YOUR
COMMODORE 64 19

• 2. 1 Unpacking and Connecting the

Z80 Cartridge 20

• 2.2 Installing the Z80 Cartridge 22

2.2.1 Using the Z80 Cartridge with

VIC Peripherals 22

TABLE OF CONTENTS 3



2.2.2 Using the Z80 Cartridge with
CBM Series Peripherals 22

• 2.3 Connecting Disk Drives 24
2.3.1 Connecting VIC 1541

Disk Drives 24
2.3.2 Connecting CBM Series

Disk Drives 24

3. USING YOUR COMMODORE
64 PERIPHERALS FROM
CP/M 25
• 3.1 Printer Interface 26
• 3.2 The Commodore 64 Serial Interface 27
• 3.3 The IEEE Interface Cartridge 27
• 3.4 Daisy Chaining Peripherals 28
• 3.5 The Commodore 64 User Port 29

4. GETTING STARTED 31
• 4.1 Bringing CP/M onto Your Commodore 64 . 32

4. 1. 1 Starting CP/M 33
4.1.2 Making Copies of Your CP/M

System Disk 34
• 4.2 The COPY Utility 35

4.2.1 Formatting a Disk with the

COPY Utility 35
4.2.2 Creating a Disk Backup with the

COPY Utility 37
4.2.3 Copying the System Tracks

with the COPY Utility 38
• 4.3 The CONFIG Utility 39

4.3. 1 Using CONFIG to Change the

Number of Disk Drives 40
4.3.2 Using CONFIG to Change the

Printer Type 41
4.3.3 Using CONFIG to Change the

Initial Caps Mode 41
4.3.4 Using CONFIG to Change the

Function Key Assignments 42
4.3.5 Using CONFIG to Change the

Key Codes 44

4 TABLE OF CONTENTS



4.3.6 Using CONFIG to Save the New
I/O Setup 45

• 4.4 Generating a New CP/M System with
SYSGEN 45
4.4. 1 Relocating CP/M 46
4.4.2 Saving the New System 47
4.4.3 Using SYSGEN 48

• 4.5 The Commodore 64 Keyboard and Screen
with CP/M 49

5. CP/M OPERATION 51
• 5.1 How to Use This Chapter 52
• 5.2 CP/M File Naming Conventions 52
• 5.3 Input/Output Hardware Conventions 55

5.3.1 Loading Programs from Disk:

Single Drive 56
5.3.2 Loading Programs from Disk:

Dual Drive 57
• 5.4 CP/M Command Structure 57
• 5.5 CP/M Commands 61

5.5.1 pgm-name (Load and Run a

CP/M Program) 61
5.5.2 x: (Change the Currently

Logged Disk) 63
5.5.3 ASM 64
5.5.4 DDT 66
5.5.5 DIR 71

5.5.6 DUMP 73
5.5.7 ED 73
5.5.8 ERA 82
5.5.9 LOAD 83
5.5.10 MOVCPM 83
5.5.11 PIP 85
5.5.12 REN 91
5.5.13 SAVE 92
5.5.14 STAT 93
5.5.15 SUBMIT 97
5.5.16 SYSGEN 100
5.5.17 TYPE 102
5.5.18 USER 103
5.5.19 XSUB 104

TABLE OF CONTENTS 5



6. CP/M ON THE
COMMODORE 64 107

• 6. 1 The Structure of CP/M 108
6.1.1 How CP/M Works on Your

Commodore 64 1 09
6.1.2 6510 Memory Use Ill

6. 1.3 Addresses under CP/M 113
6.1.4 Z80 Memory Use 114

• 6.2 The BOOT Programs 116
• 6.3 The BIOS Programs 117
• 6.4 CP/M Disk Organization 120
• 6.5 The CP/M BDOS 121

6.5. 1 Sample BDOS Function Call 123
• 6.6 Calling a Z80 Program from the 6510 134

6.6. 1 Some Examples 135
• 6.7 Calling a 6510 Program from the Z80 136

6.7.1 Switching on the 6510 137
• 6.8 Program Execution under CP/M 139

7. APPENDICES i«
• A. Commodore 64 Memory Map 142
• B. Bibliography 144
• C. CP/M Command List 148
• D. ASCII, CHR*. and Hexadecimal

Character Codes 151
• E. BIOS and BOOT Listings (both 6510

and Z80) 155

8. HARDWARE SCHEMATICS. 239
• Z80 Schematic
• Commodore 64 Schematic

6 TABLE OF CONTENTS



CHAPTER

INTRODUCTION
TOCP/M
ON YOUR

COMMODORE 64

• Overview of CP/M on Your

Commodore 64
• How To Use This Manual
• Digital Research License

Information
• Registration Information

• Warranty and Service

Information
• Get More out of Your

Commodore Computer



Your purchase of the Commodore Z80 add-on microproces-

sor cartridge puts you in the elite group of owners of a dual

processor home microcomputer. No one but Commodore—
the originator of the home microcomputer— could design

and manufacture an inexpensive home or personal compu-

ter that accommodates the two most common microproces-

sors in the microcomputer industry:

• the Commodore MOS 6510 (6502 type)

microprocessor

• the Z80A microprocessor

The 6510 microprocessor is the main processor on your

Commodore 64. The 6510 Is a specially designed variation

of the widely distributed 6502 microprocessor found In

many popular home and office computers. The 6510 runs

the same instruction set as the 6502 but includes some
special features that make It work more efficiently in your

Commodore 64.

It Is the 6510 main processor that is active when your

Commodore 64 Is running in native mode. In native mode,

your Commodore 64 is controlled by its Commodore 64

Kernal operating system, Screen Editor, and the BASIC
V2.2 interpreter. Native mode gives you access to a vast li-

brary of Commodore 64 applications packages from Com-
modore or from one of the many independent Commodore
64 software developers around the world.

When you add your Z80 cartridge to the system and start

Digital Research's CP/M® operating system, you open the

door to more than 15,000 CP/M-based application pro-

grams. CP/M is the most popular 8-bit operating system

and is used for business applications throughout the world.

If you have a special application need, it's very likely that

a CP/M package exists to meet it. CP/M applications are

available in such areas as:

• financial reporting

• financial analysis

• Investment planning
• word processing

• law

• real estate

8 INTRODUCTION TO CP/M ON YOUR COMMODORE 64



• farm management
• restaurant management
• data base
• exotic language compilers (PL/I, PASCAL, C)

and many, many more

1.1 OVERVIEW OF CP/M ON TOUR
COMMODORE 64
CP/M on your Commodore 64 can run in a maximum of

48K (IK = 1024 characters) of memory. The rest of memory
is occupied by the Commodore 64 Kernal routines that

provide input/output support for CP/M.
While you are running CP/M under the Z80 processor,

the 6510 main processor acts as an input/output proc-

essor. When the 6510 is active, your Commodore 64 is

executing in native mode. When it's running in native

mode, your Commodore 64 "knows" how to handle its

keyboard, screen, and peripherals (disks and printer).

Rather than duplicate this facility to run under the Z80
processor, CP/M simply calls on the 6510 main processor to

perform these tasks.

In addition to CP/M, you get a set of custom utilities that

make it easy for you to run CP/M on your Commodore 64.

You get:

• The COPY utility that formats diskettes in the CP/M
format; easily produces backups of CP/M diskettes,

even on single-drive systems; and copies the impor-

tant CP/M system tracks.

• The CONFIG utility that makes it easy for you to in-

form CP/M of changes to your system peripherals,

load the Commodore 64 function keys for use under
CP/M, and re-define keyboard characters to yield

any code you want.
• The MOVCPM utility that allows you to create a dif-

ferent sized version of CP/M without the need to

learn Z80 Assembler language. MOVCPM relocates

an of CP/M, including the BOOT and BIOS pro-

grams.

INTRODUCTION TO CP/M ON YOUR COMMODORE 64 9



You can load anything you like into the eight Commo-
dore 64 Function Keys. When CP/M is started, the eight

function keys are loaded with the following CP/M com-

mands (<CR> stands for | | ):

Fl Z DIRXCRZ
F2 Z DIR B:XCRZ
F3 Z STAT *.*XCRZ
F4 Z STAT B:*.*XCRZ
F5 Z COPYXCRZ
F6 Z CONFIGXCRZ
F7 Z DDTXCRZ
F8 Z DDT

CP/M on your Commodore 64 supports upper and lower

case characters. You can toggle between upper case only

and upper/lower case using the Commodore ( Q ) key. For

special applications, you can redefine the codes returned

to your CP/M programs from the keyboard or sent to the

screen from your programs.

1.2 HOW TO USB THIS MANUAL
The very first thing to do is to read the Digital Research
License Agreement in Section 1.3. Next, Jill in and mail

the Digital Research CP/M Registration Card at the end of

this manual as soon as possible.

With those tasks accomplished, it's time to start running
CP/M on your Commodore 64. Chapter 2 tells you how to

use your Z80 cartridge. Read this chapter before you try

to plug it in.

The distribution version of Commodore 64 CP/M as-

sumes that you have a VIC 1515/1525 printer and a single

VIC 1541 disk drive. If your Commodore 64 is equipped
with some other combination, consult Chapter 3 for in-

formation on using your peripherals.

Chapter 4 is where things really get started. Read this

chapter to learn how to bring up CP/M on your system.
This chapter also tells you about the Commodore 64 spe-

cific CP/M utilities that you'll need and talks about using

the Commodore 64 keyboard with CP/M.

10 INTRODUCTION TO CP/M ON YOUR COMMODORE 64



IMPORTANT! BE SURE TO MAKE A BACKUP COPY OF YOUR CP/M DIS-

TRIBUTION DISKETTES BEFORE YOU BEGIN PLAYING WITH CP/M. IF

YOU DESTROY THESE DISKETTES, YOU LOSE CP/M. SO BE CAREFUL!

ONCE YOU HAVE MADE A COPY OF THE DISTRIBUTION DISKETTES (USE

THE FORMAT AND BACKUP FEATURES OF THE COPY UTILITY), PUT THE

ORIGINALS IN A COOL, DRY PLACE, AWAY FROM MAGNETIC FIELDS.

DON'T USE THEM AGAIN UNLESS YOU ABSOLUTELY HAVE TO (FOR

EXAMPLE, IF YOU ACCIDENTALLY DESTROYED ALL OF YOUR OPERATING

COPIES)!

The distribution version of CP/M (the one that you get on

the distribution diskette) is for a 44K CP/M system. You
should use this version if you have the IEEE interface car-

tridge. If you don't, look in Chapter 4 to learn how to con-

struct a 48K version that can take advantage of the addi-

tional 4K of RAM available on your system.

Chapter 5 is a reference section which includes de-

scriptions of all of the CP/M commands and utility pro-

grams that you need to function in the CP/M environment.

Chapter 5 shows you how to execute programs under CP/M
and talks about CP/M files and file naming conventions.

Chapter 6 is for those of you who want to get involved in

the technical workings of CP/M on your Commodore 64.

You DO NOT have to know any of this material to use CP/M.

If interested, you can look into the first few sections of

Chapter 6 to get an idea of how CP/M is implemented on

the Commodore 64 and how CP/M itself is structured.

The balance of Chapter 6 is for the technically sophisti-

cated user. You can learn about the BOOT and BIOS pro-

grams written to support CP/M on the Commodore 64 and

you can learn how to cross-call routines between the two

processors. To understand these sections fully, you should

have a strong working knowledge of both 6510 (6502) and

Z80 Assembler language.

Chapter 7 provides you with the engineering details of

your Z80 cartridge and your Commodore 64. If you

understand computer hardware, you can look here to see

how they did it.

This manual is intended to get you started in CP/M. If

you want to explore the depths of the CP/M operating sys-

tem, look in your local bookstore for one (or more) of the

INTRODUCTION TO CP/M ON YOUR COMMODORE 64 11



many CP/M books published in the last few years. We've

listed some of them in the Bibliography, Appendix B. Skim
the books to see which one you like best.

Likewise, this manual does not provide a tutorial in the

use of the Z80 microprocessor. If you're interested in pro-

gramming the Z80 in Assembler, you'll need detailed refer-

ences. The Bibliography contains a list of some of the Z80
books you can find in your bookstore.

1.3 DIGITAL RESEARCH
LICENSE INFORMATION
IMPORTANT: Commodore's license with Digital Research
requires that each purchaser of the Commodore 64 CP/M
system register with Commodore so that accurate records

can be maintained of all CP/M users.

Because Digital Research requires this information, we
have provided a post card for you to fill out and send in. The
serial number of your CP/M system disk is stamped on the

labels of the disks you receive with your Z80 cartridge and
CP/M information. Please fill out the card and send it to us.

READ THE LICENSE AGREEMENT CAREFULLY.

1.3.1 Digital Research License Agreement

DIGITAL RESEARCH

Box 579, Pacific Grove, California 93950

SOFTWARE LICENSE AGREEMENT

IMPORTANT:

All Digital Research programs are sold only on the condition that the

purchaser agrees to the following license. READ THIS LICENSE CARE-

FULLY. If you do not agree to the terms contained in this license,

return the packaged diskette UNOPENED to your dealer and your

purchase price will be refunded. If you agree to the terms contained

in this license, fill out the REGISTRATION information and RETURN by

mail to Commodore.

DIGITAL RESEARCH agrees to grant and the Customer agrees to

accept, on the following terms and conditions, nontransferable and

12 INTRODUCTION TO CP/M ON YOUR COMMODORE 64



nonexclusive licenses to use the software program(s) (Licensed Pro-

grams) herein delivered with this agreement.

TERM:

This agreement is effective from the date of receipt of the above

referenced program(s) and shall remain in force until terminated by

the Customer upon one month's prior written notice, or by Digital Re-

search as provided below.

Any license under this Agreement may be discontinued by the Cus-

tomer at any time upon one month's prior written notice. Digital Re-

search may discontinue any license or terminate this Agreement if the

Customer fails to comply with any of the terms and conditions of this

Agreement.

LICENSE:

Each program license granted under this Agreement authorizes the

Customer to use the Licensed Program(s) in any machine-readable

form on any single computer system (referred to as System). A sepa-

rate license is required for each System on which the Licensed Pro-

gram^) will be used.

This Agreement and any of the licenses, programs, or materials to

which it applies may not be assigned, sublicensed, or otherwise trans-

ferred by the Customer without prior written consent from Digital Re-

search. No right to print or copy, in whole or in part, the Licensed

Program(s) is granted except as hereinafter expressly provided.

PERMISSION TO COPY OR MODIFY LICENSED PROGRAMS:
The Customer shall not copy, in whole or in part, any Licensed

Programs which are provided by Digital Research in printed form

under this Agreement. Additional copies of printed materials may be

acquired from Digital Research.

Any Licensed Program which is provided by Digital Research in

machine-readable form may be copied, in whole or in part, in

printed or machine-readable form in sufficient number for use by the

Customer with the designated System, to understand the contents of

such machine-readable material, to modify the Licensed Program as

provided below, for backup purposes, or for archive purposes, pro-

vided, however, that no more than five (5) printed copies will be in

existence under any license at any one time without prior written con-

sent from Digital Research. The Customer agrees to maintain appro-

priate records of the number and location of all such copies of

Licensed Programs. The original, and any copies of the Licensed Pro-

grams, in whole or in part, which are made by the Customer shall be

the property of Digital Research. This does not imply, of course, that

INTRODUCTION TO CP/M ON YOUR COMMODORE 64 13



Digital Research owns the media on which the Licensed Programs are

recorded. The Customer may modify any machine-readable form of a

Licensed Program for his or her own use and merge it into other pro-

gram material to form an updated work, provided that, upon discon-

tinuance of the license for such Licensed Program, the Licensed Pro-

gram supplied by Digital Research will be completely removed from

the updated work. Any portion of the Licensed Program included in

an updated work shall be used only if on the designated System and

shall remain subject to all other terms of this Agreement.

The Customer agrees to reproduce and include the copyright notice

of Digital Research on all copies, in whole or in part, in any form,

including partial copies of modifications, of Licensed Programs made
hereunder.

PROTECTION AND SECURITY:

The Customer agrees not to provide or otherwise make available

any Licensed Program including but not limited to program listings,

object code, and source code, in any form, to any person other than

the Customer or Digital Research employees, without prior written con-

sent from Digital Research, except with the Customer's permission for

purposes specifically related to the Customer's use of the Licensed

Program.

DISCONTINUANCE:
Within one month after the discontinuance of any license under this

Agreement, the Customer will furnish to Digital Research a certificate

certifying that through his or her best effort, and to the best of his or

her knowledge, the original and all copies, in whole or in part, in

any form, including partial copies in modifications, of the Licensed

Program(s) received from Digital Research or made in connection with

such license have been destroyed, except that, upon prior written

authorization from Digital Research, the Customer may retain a copy

for archive purposes.

DISCLAIMER OF WARRANTY:
Digital Research makes no warranties with respect to the Licensed

Programs. The sole obligation of Digital Research shall be to make

available all published modifications or updates made by Digital Re-

search to Licensed Programs which are published within one (1) year

from date of purchase, provided the Customer has returned the Re-

gistration Card delivered with the Licensed Program.

LIMITATION OF LIABILITY:

THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRAN-
TIES, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,

14 INTRODUCTION TO CP/M ON YOUR COMMODORE 64



THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE. IN NO EVENT WILL DIGITAL RESEARCH BE

LIABLE FOR CONSEQUENTIAL DAMAGES EVEN IF DIGITAL RESEARCH

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

GENERAL:

If any of the provisions, or portions thereof, of the Agreement are

invalid under any applicable statute or rule of law, they are to that

extent to be deemed omitted.

1.4 REGISTRATION
INFORMATION
Please fill out the CP/M Registration Card that is enclosed

with your Z80 cartridge and CP/M system. Mail the com-
pleted card to:

DIGITAL RESEARCH
P.O. Box 579
Pacific Grove, CA 93950

We need the information on the card to provide informa-

tion on system updates and to inform you of related new
products. The serial number of your CP/M system is the

number stamped on the label of the CP/M disks.

1.5 WARRANTY
If your unit is defective when you buy it, return it im-

mediately to the original place of purchase. Your dealer will

be able to give you the fastest service if you have problems.

You can also send your unit directly to Commodore for re-

placement. The warranty card enclosed in your unit's pack-

age lists addresses for service. Be sure to enclose your re-

ceipt and a note explaining the problem. See your warranty
card for more information.

INTRODUCTION TO CP/M ON YOUR COMMODORE 64 15



1.6 GET MORE OUT OP TOUR
COMMODORE COMPUTER
Commodore wants you to know that our support for users

only starts with your purchase of a Commodore computer.

That's why we've created two publications with Commodore
information from around the world, and a "two-way" com-
puter information network with valuable input for users in

the U.S. and Canada from coast to coast.

In addition, we wholeheartedly encourage and support

the growth of Commodore User's Clubs around the world.

They are an excellent source of information for every Com-
modore computer owner, from the beginner to the most ad-

vanced. The magazines and network, which are more fully

described below, have the most up-to-date information
about how to get involved with the User's Club in your area.

Finally, your local Commodore dealer is a useful source of

Commodore support and information.

1.6.1 POWER/PLAY: The Home Computer
Magazine
For entertainment, learning at home and practical home
applications, POWER/PLAY is the prime source of infor-

mation for Commodore home users. From it you will learn

where your nearest user clubs are and what they're doing.

You'll also learn about software, games, programming
techniques, telecommunications, and new products.
POWER/PLAY is your personal connection to other Com-
modore users, outside software and hardware developers,

and to Commodore itself. Published quarterly, it sells for

$10.00 a year.

1.6.2 COMMODORE: The Microcomputer
Magazine

Widely read by educators, businessmen, and students as

well as by home computerists, COMMODORE Magazine is

our main vehicle for sharing information on the more
technical use of Commodore systems. Regular departments
cover business, science and education, programming tips,

and "excerpts from a technical notebook." There are many
other features of interest to anyone who uses or is thinking

16 INTRODUCTION TO CP/M ON YOUR COMMODORE 64



abQ,ut purchasing Commodore equipment for business, sci-

entific, or educational applications. COMMODORE is the

ideal complement to POWER/PLAY. It is published bi-

monthly, and subscriptions are $15.00 a year.

1.6.3 COMMODORE INFORMATION NET-
WORK: The Paperless User Magazine

This is the magazine of the future. To supplement and
enhance your subscriptions to POWER/PLAY and COM-
MODORE magazines, the COMMODORE INFORMATION
NETWORK— our "paperless magazine"— is available now
over the telephone using your Commodore computer and
modem.
Join our computer club, get help with a computing prob-

lem, "talk" to other Commodore friends, or get up-to-the-

minute information on new products, software, and educa-

tional resources. Soon you will even be able to save yourself

the trouble of typing in the program listings you find in

POWER/PLAY or COMMODORE by downloading direct

from the Information Network (a new user service planned

for early 1983). The best part is that most of the answers

are there even before you ask the questions.

To call our electronic magazine, you need only a modem
and a subscription to CompuServe™, one of the nation's

largest telecommunications networks. (To make it easy for

you, Commodore includes a FREE one year subscription to

CompuServe™ in each VICMODEM package.)

Just dial your local number for the CompuServe™ data

bank and connect your phone to the modem. When the

CompuServe™ video text appears on your screen, type

G CBM on your computer keyboard. When the COMMO-
DORE INFORMATION NETWORK table of contents, or

"menu," appears on your screen, choose from one of our

sixteen departments, make yourself comfortable, and enjoy

the paperless magazine that other magazines are writing

about.

For more information, visit your Commodore dealer or

contact CompuServe™ customer service at 800-848-8990

(in Ohio, 614-457-8600).

INTRODUCTION TO CP/M ON YOUR COMMODORE 64 17



COMMODORE INFORMATION NETWORK
Main Menu Description Commodore Dealers

Direct Access Codes Educational Resources

Special Commands User Groups
User Questions Descriptions

Public Bulletin Board Questions and Answers
Magazines and Newsletters Software Tips

Products Announced Technical Tips

Commodore News Direct Directory Descriptions

18 INTRODUCTION TO CP/M ON YOUR COMMODORE 64



CHAPTER '

SETTING
UP YOUR

COMMODORE 64

Unpacking and Connecting
the Z80 Cartridge

Installing the Z80 Cartridge

Connecting Disk Drives



It's very easy to set up your Commodore 64 to run CP/M.
You turn off your computer, plug in the Z80 cartridge, turn

on your disks and computer and get started. Follow the

directions in this chapter carefully.

REMEMBER: YOU MUST TURN OFF YOUR COMMODORE 64 BEFORE YOU
INSERT THE Z80 CARTRIDGE IF YOU INSERT THE CARTRIDGE WITH THE

POWER ON, YOU WILL DESTROY THE CARTRIDGE!'

2.1 UNPACKING AND CONNECT-
ING THE Z80 CARTRIDGE
Before using CP/M on your Commodore 64, you must cor-

rectly connect your Commodore 64 to your TV and periph-

erals. For instructions on connecting your Commodore 64
to your TV, disk, and printer, read the manual that comes
with your computer.

When you purchase CP/M for your Commodore 64, you
get these items:

1. Z80 cartridge.

2. CP/M system disk.

3. Other disk.

4. User's manual.

Before you can connect your Z80 cartridge, you must
know where to connect it. Figure 2.1 shows a diagram of

the side and back panel connections for your computer.

Your Commodore 64 has these side panel connections:

1

.

Power socket. The free end of the cable from the

power supply is attached here to supply power to

your Commodore 64.

2. Power switch. This turns the power to your
Commodore 64 on and off.

3. Game ports. These accept a joystick, one or more
game controllers, or lightpen equipment. The
lightpen plugs Into port 1 only.

20 SETTING UP YOUR COMMODORE 64



CONTROL Nit Dl
PORT I » ( ' 2

© 6 IS
GAME POWER POWER
PORTS SWITCH SOCKET

CARTRIOGE CHANNEL TV AUDIO/VIDEO SERIAL CASSETTE USER

SLOT SELECTOR CONNECTOR CONNECTOR PORT INTERFACE PORT

Figure 2.1 Commodore 64 Panel Connections Diagram

Your Commodore 64 has these back panel connections:

4. Cartridge slot. The rectangular slot to the left ac-

cepts program or game cartridges. This is the con-

nection Jot your Z80 cartridge.

5. Channel selector. Use this switch to select the TV
channel that will display your computer's picture.

6. TV connector. This connector supplies the picture

and sound to your TV.

7. Audio & video output. This connector supplies

direct audio (which you connect to your stereo sys-

tem) and "composite" video (which you connect to

a monitor).

8. Serial port. This is the connection for your VIC

peripherals (1541 drives and 1515/1525 printer).

You must connect your VIC disk drive to this port

and your VIC printer to your VIC disk drive.

9. Cassette interface. This is the connection for

your DATASSETTE™ recorder.

SETTING UP YOUR COMMODORE 64 21



1 0. User port. This is a port for various interface car-

tridges such as the VICMODEM or RS-232 com-
munications cartridge.

2.2 INSTALLING THE Z80
CARTRIDGE
Now that you know where your Commodore 64 connections

are, you're ready to install your Z80 cartridge. You connect

the Z80 cartridge directly to your Commodore 64 if you are

using the VIC 1541 disk drive. You connect the Z80 car-

tridge to an IEEE interface cartridge if you're using the

CBM 4040 disk drives or the CBM 4022 printer.

2.2.1 Using the Z80 Cartridge
with VIC Peripherals

If you're using VIC peripherals like the VIC 1 54 1 disk drives

and the VIC 1525 printer, follow these easy steps:

1. TURN OFF THE POWER TO YOUR COMPUTERl
2. Install the Z80 cartridge in the cartridge slot

marked 4 in the diagram in Figure 2.1.

3. Turn on your computer and you're ready to start

using CP/M on your Commodore 64.

REMEMBER! IF YOU INSERT THE Z80 CARTRIDGE WITH THE POWER TO

THE COMPUTER TURNED ON, YOU WILL DAMAGE THE CARTRIDGE!

2.2.2 Using the Z80 Cartridge
with CBM Series Peripherals

If you're using CBM series peripherals like a CBM 4040
disk drive or a CBM 4022 printer, you follow a slightly dif-

ferent procedure for connecting the Z80 cartridge. Re-

member, you need to use the IEEE interface cartridge if

you're using a CBM peripheral.

The IEEE interface cartridge has a connector for other

22 SETTING UP YOUR COMMODORE 64



cartridges (like the Z80 cartridge) and also has a connector

for the CBM peripherals. Figure 2.2 shows a diagram of the

IEEE cartridge connections.

Follow these easy steps to connect your Z80 cartridge to

your Commodore 64 when you're using the IEEE Interface

cartridge and CBM series peripherals:

1. TURN OFF THE POWER TO YOUR COMPUTER!
2. Install the IEEE interface cartridge in the cartridge

slot marked 4 in the diagram in Figure 2.1.

3. Install the Z80 cartridge into the IEEE cartridge slot

as shown in the diagram in Figure 2.2.

4. Connect your CBM peripherals to the connector on

the IEEE cartridge.

5. Turn on your computer and you're ready to start

using CP/M on your Commodore 64.

REMEMBER: IF YOU INSERT THE Z80 CARTRIDGE WITH THE POWER TO

THE COMPUTER TURNED ON, YOU WILL DAMAGE THE CARTRIDGE!

®
"U

®

©
1 1-. THIS FN" »."" THE IEEE 488 SLOT OF YOUR

«• • JTER
2 \ ." E HERE
3 \ -VUUI •. ,ttE CONNECTORS HERE

Figure 2.2 IEEE Interface Cartridge Diagram

SETTING UP YOUR COMMODORE 64 23



2.3 CONNECTING DISK DRIVES
The method you use to connect your disk drives depends on
the types of drives you use. You can use either a VIC series

disk drive (like the 1541) or a CBM series single or dual disk

drive (like the 4040) with your Commodore 64.

You don't have to write any special code to use your disk

drives under CP/M. The system accesses your disk drives as

Drive A and Drive B, regardless of which type of drive you're

actually using.

If you use a single disk drive, CP/M uses Drive A and uses
a virtual drive for Drive B (CP/M will prompt you to change
the physical disk in the drive when you ask for Drive B). If

you're using a CBM series dual drive, CP/M uses Drive A
and Drive B.

2.3.1 Connecting VIC 1541 Disk Drives

You can use one VIC 1541 disk drive. Like all Commodore
peripherals, the VIC 1541 disk drive can be "daisy chained."

That is, you can connect your VIC disk drive to a VIC print-

er.

Connect the single VIC disk drive to the serial port

(marked 8 in the diagram in Figure 2.1). For full details on
connecting a VIC 1541 disk drive to your Commodore 64,

see the manual that comes with the drives.

If you're also using a VIC 1525 printer, connect the
printer to the connector in the back of your VIC 1541 disk

drive.

2.3.2 Connecting CBM Series Disk Drives

When using CBM series peripherals (like the CBM 4040
disk drive or the CBM 4022 printer), you need to connect
your peripherals to the IEEE interface cartridge. Figure 2.2

shows a diagram of the IEEE interface cartridge.

You can daisy chain your CBM printer to your CBM disk

drive. For more details on connecting your CBM disk drive,

see the manual that comes with your IEEE interface car-

tridge.

24 SETTING UP YOUR COMMODORE 64



CHAPTER

USING YOUR
COMMODORE 64
PERIPHERALS
FROM CP/M

Printer Interface

The Commodore 64 Serial

Interface

The IEEE Interface Cartridge

Daisy Chaining Peripherals

The Commodore 64 User Port



CP/M, as implemented on your Commodore 64, can access

any standard Commodore 64 peripheral (except the RS-232
port and the modem) using standard CP/M device access

protocols. This involves calls to the appropriate CP/M BDOS
functions. (You can also call the BIOS directly, although

this is not recommended.)
The actual peripheral interface drivers reside in the CP/M

BIOS. This special BIOS, unique to your Commodore 64, is

in two parts. One part executes under the Z80 add-on proc-

essor and the other under the 6510 main processor.

Peripheral device access is set up through a series of pa-

rameters by the Z80 part of the BIOS. The actual device

access is carried out by the 6510 part of the BIOS operating

in Commodore 64 native mode.
You must configure CP/M—using the CONFIG utility— so

that it knows what kind of printer you have and how many
disk drives you have. If you change the type of printer or the

number of disk drives on the system, you must use the

CONFIG utility to inform CP/M of the change.

3.1 PRINTER INTERFACE
CP/M must know what type of printer you have. Generally

you will have a VIC 1515, VIC 1525, or CBM 4022 printer.

For purposes of the CONFIG utility, the 1515 and 1525 are

the same, and the 4022 represents any CBM series printer.

The VIC 1515 and 1525 printers use the standard Com-
modore 64 serial bus. The 4022 printer (or any other CBM
series printer) requires the optional IEEE interface car-

tridge.

Once you have properly attached the printer to your

Commodore 64 and have run the CONFIG utility under

CP/M, you can print using programs that run under CP/M
or using standard CP/M BDOS calls from Z80 Assembler

language programs.

26 USING YOUR COMMODORE 64 PERIPHERALS FROM CP/M



3.2 THE COMMODORE 64
SERIAL INTERFACE

Your Commodore 64 comes standard with a bit serial inter-

face through which you communicate with the Commodore

64 disk drives and printers. Access to the Commodore 64

serial interface is handled automatically under CP/M.

If you attach a nonstandard device to the Commodore 64

bit serial interface, you must prepare code to handle that

device. The actual device handling code must execute in

Commodore 64 native mode (under the 6510 main proc-

essor). Of course, you also need device handling code to run

under the Z80, controlling execution of the native mode

device-handling routine.

3.3 THE IEEE INTERFACE
CARTRIDGE
If you want to connect your Commodore 64 to IEEE bus

compatible devices, you can do that using the IEEE inter-

face cartridge.

The IEEE interface cartridge plugs into the cartridge slot

on the rear of your Commodore 64. The interface cartridge

includes a slot for plugging in your Z80 cartridge. (See the

instructions that come with your IEEE interface cartridge.)

The interface cartridge allows you to attach Commodore's

own IEEE-compatible peripherals. These more capable,

more expensive peripherals are usually available only for

Commodore's business computers. The IEEE interface car-

tridge also provides a link to a multitude of IEEE- bus-

based products. For example, many industrial and scien-

tific instruments and devices are controlled using the IEEE

bus protocols. With the IEEE interface cartridge, your

Commodore 64 can control and collect data from these

devices.

USING YOUR COMMODORE 64 PERIPHERALS FROM CP/M 27



NOTE: If you do acquire the IEEE interface cartridge, you will have

44K—NOT 48K—available for CP/M Be sure to generate a 44K version

of CP/M before you install the IEEE interface cartridge

If you are also installing IEEE bus peripherals, especially disk drives,

remember to run the CONFIG utility an your 44K CP/M, informing it of

your new peripherals

3.4 DAISY CHAINING
PERIPHERALS
The advanced architecture of the standard Commodore 64

serial bus and of the Commodore IEEE serial bus permits

peripherals to be linked to one another in a "daisy chain."

Daisy chaining of peripherals means that you need not

buy another interface card or connector every time you add

a peripheral to your Commodore 64. The peripherals simply

connect to each other to be accessed through a single port

on your Commodore 64.

You can daisy chain VIC peripherals on the standard

Commodore 64 serial bus or CBM series peripherals

through the IEEE interface cartridge, as shown in Figure

3.1.

VIC PERIPHERALS SYSTEM

(Uses Standard Commodore 64 Serial Port)

Computer 7 VIC Disk Drive 7 VIC Printer

CBM PERIPHERALS SYSTEM
(Requires IEEE Interface Cartridge)

Computer 7 CBM Dual Disk Drive 7 CBM Printer

or

Computer 7 CBM Printer 7 CBM Dual Disk Drive

Figure 3.1 Daisy Chaining Peripherals.

28 USING YOUR COMMODORE 64 PERIPHERALS FROM CP/M



NOTE: You can also attach the s.ngle drive (2031) version of the CBM

4040 disk drive to the IEEE interface cartridge on your Commodore 64.

3.5 THE COMMODORE 64
USER PORT
Your Commodore 64 user port can accommodate some use-

ful optional devices. Most interesting from CP/M are the

VICMODEM and the RS-232 communications cartridge.

If you acquire one of these cartridges and you want to

access it from CP/M, you must write the processing code for

execution in native mode under the 6510 main processor.

This is necessary because these cartridges generate non-

maskable interrupts which must be handled by the 6510
processor.

You can gain access to special code for handling these

cartridges through BIOS65 function codes 7, 8, or 9. (See

the discussion of the CP/M BIOS in Chapter 6 for details on
using these function codes.)

In designing this code, you should consider receiving a

certain number of characters— say 128 or 256— into a

shared buffer. When you have received these characters, in-

form the device you are communicating with that you are

not ready to receive data. You can then safely switch control

from the 6510 main processor to the Z80, which can do

whatever is required with those characters.

For detailed information on programming for the RS-232
port, see the Commodore 64 Programmer's Reference
Manual.

USING YOUR COMMODORE 64 PERIPHERALS FROM CP/M 29





CHAPTER

GETTING
STARTED

Bringing CP/M onto Your
Commodore 64
The COPY Utility

The CONFIG Utility

Generating a New CP/M
System with SYSGEN



This chapter tells you how to start using CP/M on your
Commodore 64. Read it carefully. It's very easy to bring

CP/M onto your computer, but you should be sure that you
understand the information in this chapter before you start

CP/M or run any programs under it.

In this chapter you will learn:

• how to load and run your CP/M system
• how to format new disks and make backup copies of

your system
• how to use the special Commodore 64 CP/M utilities

• how to generate a new version of CP/M
• how to use the special Commodore 64 keyboard

under CP/M

The distribution 44K version of CP/M assumes that you
are using the IEEE interface cartridge. If you don't have the

IEEE interface cartridge, you can generate a 48K version of

CP/M by following the instructions in Section 4.4.

4.1 BRINGING CP/M ONTO YOUR
COMMODORE 64
It is easy to bring CP/M onto your Commodore 64. Before

you load CP/M, be sure that youve correctly installed your
Z80 cartridge and your disk drive(s) and printer. If you
haven't done this, read Chapter 2 for installation instruc-

tions.

After installing your Z80 cartridge and peripherals, follow

the instructions in Section 4. 1. 1 to load your CP/M system.

Once you've loaded CP/M and made copies of the system
disks for backup, you're ready to try any of the commands
in Chapter 5.

NOTE: Remember to make copies of your CP/M disks before you do any

other processing. You need a backup copy of the disks that you pur-

chased.

32 GETTING STARTED



4.1.1 Starting CP/M

To bring CP/M onto your Commodore 64 system, you start

the computer and load the CP/M system. Just follow these

easy steps and make a backup copy of your system disks

right after you get CP/M to startfor thejirst time:

1. Turn on your equipment (peripherals and compu-
ter). Your Commodore 64 will print its usual "sign

on" message:

**** COMMODORE 64 BASIC V2****

64K RAM SYSTEM 3891 1 BASIC BYTES FREE

READY.

2. Put the disk marked Commodore CP/M®*V.64 into

your disk drive. This disk contains your CP/M sys-

tem.

3. Your Commodore 64 is in native mode. Type the

following:

LOAD "*",8 <CR>

or

LOAD "CPM", 8

4. Your Commodore 64 reads the disk and answers:

SEARCHING FOR * (or CPM instead of *)

LOADING

READY.

5. The Commodore 64 segment of CP/M is now
loaded into your computer. To load the Z80 seg-

ment and begin executing CP/M, type:

RUN <CR>

6. Your Commodore 64 now reads the disk again to

load the CP/M system into your Z80. While it is

loading CP/M, your computer will print a row of 27
asterisks (*) across the top of the screen. When
CP/M is loaded, your Commodore 64 will print:

GETTING STARTED 33



COMMODORE 64 nnK CP/M vers 2.2

Copyright © 1979, Digital Research

Copyright © 1982, Commodore

A>

7. Your CP/M system Is now loaded and ready to run.

Enter the following CP/M command to get a list of

the files on your CP/M disk:

DIR <CR>

CAUTION! BEFORE PROCEEDING, MAKE A BACKUP COPY OF YOUR
CP/M DISKSI

4.1.2 Making Copies of Your CP/M System
Disk

Now that you've started CP/M, you must make backup
copies of your system disks. It is bad practice to use the

disks that you purchased as your standard operating disks.

You could accidentally destroy the disk and then you would
not be able to run your CP/M system.

So, make a backup copy and use the copy as your CP/M
system disk. After you make the backup copy, store your

original disk in a cool, dry place, away from magnetic

fields.

To make your backup copy:

1

.

Use the COPY utility on your CP/M disk to format a

new disk. The COPY utility is discussed in detail in

Section 4.2.

2. Then use the COPY utility to copy your CP/M disk

to the backup disk. The COPY utility prompts you
along the way. depending on the number of drives

you're using. Just follow its instructions.

3. Store your original disks in a safe place, some-
where cool, dry, and away from magnetic fields.

34 GETTING STARTED



4.2 THE COPT UTILITY

The COPY utility is a special Commodore 64 CP/M utility

that allows you to:

• FORMAT a diskette for use with CP/M.
• Make a BACKUP of a CP/M diskette.

• Copy the CP/M SYSTEM TRACKS from one diskette

to another.

You should use this utility to make a backup copy of your

CP/M system disks as soon as you get CP/M up and run-

ning. Each COPY utility function is described in a separate

section below.

To load the COPY utility, enter:

COPY<CR>

CP/M loads the COPY.COM file and writes:

COMMODORE 64 COPY UTILITY 1.0

1. FORMAT DISK

2. BACKUP DISK

3. COPY SYSTEM TRACKS ONLY

4. EXIT

PLEASE CHOOSE FUNCTION (1-4)

You then choose which COPY utility function you want to

use and answer the questions that COPY asks.

4.2.1 Formatting a Disk with the COPY Utility

You mustformat a diskette before you can write any infor-

mation on it. You must format disks that you'll use under

CP/M with the COPY utility.

You format disks when:

• You get new disks and you want to prepare them to

be used with CP/M.
• You want to erase all of the information currently

on a disk.

GETTING STARTED 35



To use the COPY function to format disks, you enter 1 as

follows:

...COPY utility messages...

PLEASE CHOOSE FUNCTION (1-4) 1

FORMAT DISK UTILITY

INITIALIZES DISK FOR CP/M

CAUTION! FORMAT ERASES ALL DATA

PLACE DISK TO BE FORMATTED IN

DRIVE AND PRESS ENTER

OR

PRESS SPACEBAR TO RETURN TO MENU

Now, remove your system disk from the drive and place

the new disk (the one that you want to format) into the

drive.

CAUTION! REMEMBER THAT YOU MUST REMOVE YOUR SYSTEM DISK

OR ELSE YOU WILL ERASE YOUR SYSTEM DISK!!

COPY now writes formatting information to your disk.

Any information on the disk will be erased and all of the

tracks are made available for data. No files remain on the

disk after you run COPY'S FORMAT. COPY writes these

messages during the formatting:

FORMATTING DISK, PLEASE WAIT...

FORMAT COMPLETE

PRESS ANY KEY TO CONTINUE

You can now format another disk, copy information to

your newly formatted disk, or exit back to CP/M, depending
on your answer. If you want to format another disk, you
need to insert the disk to be formatted into the drive. If you
want to copy information, follow the instructions from
COPY. If you're exiting back to CP/M, you should put your

CP/M system disk into the drive.

NOTE: Remember that COPY erases all information from the disk when

you use the COPY FORMAT option.

36 GETTING STARTED



4.2.2 Creating a Disk Backup with the COPY
Utility

You can also use the COPY utility to make backup copies of

an entire diskette. While making a backup copy, COPY uses

a master disk and a slave disk. The master disk is the disk

that you want to make a copy of (the original disk); the

slave disk is a formatted disk that will be written to (the

copy).

If you are using a single-drive system, the COPY utility

will prompt you to insert the master or slave disk into the

drive. Be careful when making copies of a disk. Keep track

of your master disk so that you don't accidentally copy gar-

bage over your information (and erase your master disk in

the process).

To use COPY'S BACKUP function, enter a 2 in response to

the "choose function" message and follow the instructions

from COPY:

PLEASE CHOOSE FUNCTION (1-4) 2

DISK BACKUP UTILITY

THE ENTIRE MASTER DISK IS

COPIED TO THE SLAVE DISK

INSERT MASTER DISK IN DRIVE

PRESS RETURN (OR SPACEBAR FOR MENU)

Now insert the disk that you want to copyfrom into the

disk drive. If you decide that vou don't really want to copy

your disk, simply press the EZ^3 bar and COPY returns

to its original menu. ^^^^^^
Once the master disk is ready, press the ^^^^S9 key.

COPY then reads a number of sectors from the disk into

memory and writes:

INSERT SLAVE DISK IN DRIVE

PRESS RETURN

Put the disk you want to copy to into the drive and press

the carriage return. Be careful to keep the master and
slave disks in order.

COPY now writes the information from memory onto the

GETTING STARTED 37



slave disk and then asks that the master disk be replaced in

the drive. This alternating master/slave disk placement will

continue until the entire master disk is copied onto the

slave disk. At that time, COPY returns to its main menu.

4.2.3 Copying the System Tracks with the
COPY Utility

You can copy the CP/M system tracks to another disk

through the COPY system track copy function. This func-

tion copies only the system tracks, not any other informa-

tion, from a master disk to a slave disk.

You need the CP/M system tracks on any disk from which
you intend to "warm start" CP/M (start CP/M without hav-

ing to reinsert the system disk). You may want to copy the

system tracks to a disk containing a program that you will

run often. That way, when you hit a Q | -C to warm
start CP/M, you don't have to replace the disk with your

system disk.

To copy the system tracks using COPY, enter 3 for your

selection from COPYs main menu. Then follow the instruc-

tions:

PLEASE CHOOSE FUNCTION (1-4) 3

SYSTEM TRACK COPY UTILITY

COPIES SYSTEM TRACKS FROM MASTER DISK

TO SLAVE DISK

INSERT MASTER DISK IN DRIVE

PRESS RETURN (OR SPACEBAR FOR MENU)

The disk with the COPY utility contains the CP/M system

tracks (otherwise, you wouldn't have been able to start your

system). Simply press the E 3 key or. if you really

don't want to make a copy, press ihe
| 3 bar.

When you press the
| | key, COPY reads the sys-

tem tracks into memory and then writes:

INSERT SLAVE DISK IN DRIVE

PRESS RETURN

3B GETTING STARTED



Remove the master disk from the drive and insert the

disk on which you want the system tracks copied into the

drive. When you press the |i^|j^| keY. COPY will write

the CP/M system tracks (tracks and 1) to the disk in the

drive. After the system tracks are written, COPY returns to

its main menu.

4.3 THE CONFIG UTILITY

You use the Commodore CP/M CONFIG utility to change
the current I/O configuration for your CP/M system. Com-
modore provides the CONFIG utility so that you can add

peripherals to your CP/M system quickly and easily.

CP/M needs to know what peripherals you're using. For

example, if you're using only a single disk drive, CP/M will

prompt you to change the diskette in the drive when you log

to another disk. If you're using two drives, a properly con-

figured CP/M will simply use the second physical drive.

NOTE: You CANNOT mix VIC (serial) peripherals and CBM (IEEE inter-

face) peripherals on the same system.

Each of the CONFIG changes is described in a separate

section below. To use the CONFIG utility, you enter:

CONFIG <CR>

CP/M then loads the file called CONFIG.COM and writes:

COMMODORE 64 I/O CONFIGURATION UTILITY

THE CURRENT I/O ASSIGNMENTS ARE:

NUMBER OF DRIVES: 1

PRINTER TYPE: 1515

INITIAL CAPS MODE: ON

DO YOU WISH TO:

1. CHANGE NUMBER OF DISK DRIVES

2. CHANGE PRINTER TYPE

3. CHANGE INITIAL CAPS MODE

GETTING STARTED 39



4. CHANGE FUNCTION KEY ASSIGNMENTS

5. CHANGE KEY CODES

6. SAVE CURRENT I/O SETUP ON DISK

7. RETURN TO CP/M

PLEASE ENTER SELECTION (1-7)

You simply select the type of change that you want to

make and answer the questions that CONFIG asks. CONFIG
makes all the necessary changes to your CP/M system, for

both the Commodore 64 native code and the Z80 code. Add-
ing or changing peripherals to your Commodore 64 CP/M
system is as easy as running CONFIG and answering the

questions.

4.3.1 Using CONFIG to Change the Number of
Disk Drives

The CP/M system that you receive assumes that you are

using a single disk drive. You may actually have the CBM
4040 dual disk drives. CONFIG toggles back and forth be-

tween one and two disk drives.

To change the number of drives, you run CONFIG like

this:

CONFIG<CR>

when the CONFIG Messages are printed, choose selection 1

.

CONFIG then processes your answer and changes the

number of drives available to CP/M. If you originally had
one disk drive, CONFIG prints:

COMMODORE 64 I/O CONFIGURATION UTILITY

THE CURRENT I/O ASSIGNMENTS ARE:

NUMBER OF DRIVES: 2

PRINTER TYPE: 1515

INITIAL CAPS MODE: ON

DO YOU WISH TO:

rest of CONFIG messages...

PLEASE ENTER SELECTION (1-7)

40 GETTING STARTED



If you had two disk drives when you started CONFIG, you

will see this for the number of drives:

NUMBER OF DRIVES: 1

4.3.2 Using CONFIG to Change the Printer

Type

Your original CP/M system assumes that you will be using a

VIC 1515 or (1525) printer. You may want to add a CBM
4022 (or other CBM) printer. CONFIG toggles back and

forth between 1515 and 4022 printer types.

To change the printer type, you run CONFIG like this:

CONFIG<CR>

when the CONFIG Messages are printed, choose selection 2.

CONFIG then processes your answer and changes the

printer type. If you originally had a VIC 1515 printer, CON-

FIG prints:

COMMODORE 64 I/O CONFIGURATION UTILITY

THE CURRENT I/O ASSIGNMENTS ARE:

NUMBER OF DRIVES: 1

PRINTER TYPE: 4022

INITIAL CAPS MODE: ON

DO YOU WISH TO:

rest of CONFIG messages...

PLEASE ENTER SELECTION (1-7)

If you had a CBM 4022 printer when you started CONFIG,

you get this for the printer type:

PRINTER TYPE: 1515

4.3.3 Using CONFIG to Change the Initial

Caps Mode

Your original CP/M system assumes that you will be using

the all caps mode (all upper case letters when you press the

GETTING STARTED 41



keys). CONFIG toggles back and forth between initial caps
ON and OFF.
With initial caps ON, you get only upper case letters. With

initial caps OFF, you get upper and lower case letters. Re-
member that you can also toggle between caps ON and OFF
at any time by pressing the Q key.

To change the initial caps mode, you run CONFIG like

this:

CONFIG<CR>

when the CONFIG Messages are printed, choose selection 3.

CONFIG then processes your answer and changes the
printer type. If you originally had initial caps ON, CONFIG
prints:

COMMODORE 64 I/O CONFIGURATION UTILITY

THE CURRENT I/O ASSIGNMENTS ARE:

NUMBER OF DRIVES: 1

PRINTER TYPE: 1515

INITIAL CAPS MODE: OFF

DO YOU WISH TO:

rest of CONFIG messages...

PLEASE ENTER SELECTION (1-7)

If you had initial caps OFF when you started CONFIG, you
will see this:

INITIAL CAPS MODE: OFF

4.3.4 Using CONFIG to Change the Function
Key Assignments

Your CP/M system loads initial values into the eight Com-
modore 64 function keys. You can change any of these
function key values through CONFIG.

If you save the new I/O configuration to disk, the new
values will be loaded into the function keys when you next
start CP/M. If you don't save the new configuration to disk,

42 GETTING STARTED



the function keys are loaded with the new values but are

reset to the original values when you next start CP/M.

To change the function key values, you run CONFIG like

this:

CONFIG<CR>

when the CONFIG Messages are printed, choose selection 4.

CONFIG then prints:

Fl: "DIR"<CR>

F2: "DIR B:"<CR>

F3: "STAT *.*"<CR>

F4: "STAT B=*.*"<CR>

F5: "COPY"<CR>

F6-. "CONFIG"<CR>

F7: "DDT"<CR>

F8: "DDT"

ENTER FUNCTION KEY NUMBER (1-8)

TO CHANGE PRESET VALUES.

ENTER 9 TO LEAVE FUNCTION

KEY UTILITY.

To change function key 8 to "PIP<CR>", use CONFIG like

this:

ENTER FUNCTION KEY NUMBER (1-8) 8

TYPE IN TEXT USING "RETURN"

OR "CTRL-Z" AS TERMINATOR

F8: "PIP<RETURN KEY>"

ENTER FUNCTION KEY NUMBER (1-8) 9

This changes the value in function key 8 to PIP<CR>

while you are using CP/M. ^^^
If yoxi entl your new key entry with a Qj^ -Z , instead

of a Q^^Q tne function key is loaded without a ter-

minating carriage return.

GETTING STARTED 43



If you want to save this value as the initial value for func-
tion key 8 for the next time you start CP/M, you must also

choose CONFIG selection 6 to save the new I/O configura-
tion to disk. Otherwise, the next time you boot CP/M, your
function keys will contain the same initial values as they
did this time; any changes you made through CONFIG will

be lost.

4.3.5 Using CONFIG to Change the Key Codes

Your CP/M system loads a table containing the hexadecimal
values for each of the Commodore 64 keyboard keys. You
can change any of these function key values through CON-
FIG. Appendix D contains a table of ASCII characters,
hexadecimal values, and the Commodore 64 keyboard char-

ters.

NOTE: Be careful if you change the alphabetic characters. You may nor

be able to recover if you change characters that you need to run CP/M
programs or commands If you SAVE the character changes on disk

(through CONFIG selection 6), you may have trouble recovering at all.

To change the keyboard key values, you run CONFIG like

this:

CONFIG<CR>

when the CONFIG Messages are printed, choose selection 5.

CONFIG then prints:

PRESS KEY TO EXAMINE KEY CODE

TO CHANGE KEY CODE, ENTER DATA IN

HEXADECIMAL AFTER "CHANGE TO"

TO EXIT KEY CODE MODE, TYPE "RETURN"

TWICE AFTER "PRESS KEY"

TO KEEP CURRENT KEY CODE, TYPE

"RETURN" AFTER "CHANGE TO"

44 GETTING STARTED



PRESS KEY (you press the "Q" key)

IS 51 IN CAPS MODE—CHANGE TO 71

You just changed the capital Q (hexadecimal value 51) to

a lower case q (hexadecimal value 71). You won't be able to

enter a capital Q unless you use CONFIG to change it back

again. If you don't want to make any more changes, just

press the £^^53 key twice to return to tne CONFIG

main menu.

4.3.6 Using CONFIG to Save the New I/O
Setup

Once you've made changes to your I/O assignments

through CONFIG, you may or may not want to save the new

assignments. You will probably want to save the new infor-

mation if you've changed the disk drive or printer data. You

may not want to save the I/O information if you've changed

the function key assignments for a special run and don't

want the new values to be used the next time you start

CP/M.
To save your new I/O assignments to disk, select 6 from

the CONFIG menu. CONFIG then writes information to your

CP/M system data and the next time you start CP/M, the

new information will be used.

Remember, you can make changes that only affect the

current CP/M version (the one in memory when you make

the changes) if you want some special-purpose alterations.

If you don't select CONFIG choice 6, the alterations will not

be in effect the next time you load CP/M.

4.4. GENERATING A NEW CP/M
SYSTEM WITH SYSGEN
You can generate CP/M on your Commodore 64 to run in

any memory size from 20K to 48K. If you are using the

standard Commodore 64 serial bus to attach your periph-

erals—disk and printer—you should use a 48K version of

CP/M. If you acquire the IEEE interface cartridge, you must

GETTING STARTED 45



use a 44K version of CP/M. You may also want to generate a

smaller version of CP/M if you need space to load a 6510
routine that you are invoking from a CP/M program.

NOTE: If you don't intend to save the new CP/M on an existing CP/M

disk, the first step in generating a new version of CP/M is to format a

disk. Disk formatting is discussed in detail in Chapter 4 under the COPY

utility

Once you have the disk formatted for CP/M, you must use the COPY
utility to copy the System tracks from one of your existing CP/M disks to

the new disk. This operation places the 6510 loader into its proper place

Once you have properly initialized your disk, you use a

series of CP/M utility programs to generate the new version

of CP/M and save it on your disk. These utilities are:

• MOVCPM
• SAVE
• SYSGEN

These utilities have a number of options on their use. In

the following discussions, we consider only the most fre-

quently used options. A more detailed exploration of all the

utility options is found in Chapter 5.

In general, you will be generating either a 44K or a 48K
version of CP/M on your Commodore 64. We'll use generat-

ing a 48K version as an example. Other versions are gener-

ated in exactly the same way but with a different memory
size specified.

4.4.1 Relocating CP/M

MOVCPM is a system utility that relocates the CP/M
operating system to execute in any memory size you specify.

To generate a 48K version of CP/M, you enter:

MOVCM8 *

where:

48 is the memory size

* instructs MOVCPM to leave the relocated CP/M

image in memory.

46 GETTING STARTED



MOVCPM responds with:

CONSTRUCTING 48K CP/M vers 2.2

READY FOR "SYSGEN" OR

"SAVE 37 CPM48.COM"

This is the end of MOVCPM execution. You follow this by

running either the SYSGEN or the SAVE utility. Normally,

you use the SYSGEN utility. Use the SAVE utility if you

want to "patch" the operating system.

NOTE: Your Commodore 64 version of MOVCPM properly adjusts all of

the CP/M code, including the BOOT80 and BIOS80 programs. You do

NOT have to reassemble these programs and use DDT to patch them into

the new version of the operating system as you do on less capable CP/M

systems.

Execution of MOVCPM as shown above leaves a copy of

the relocated CP/M operating system, including BOOT80,
CCP, BDOS, and BIOS80, in the Transient Program Area

(TPA) ready to be saved as a file on your disk or written

directly to the system tracks. (To learn more about CP/M
structure, read Chapter 6.)

If you choose to save a copy, you can SYSGEN it later.

4.4.2 Saving the New System

The SAVE built-in command writes the content of the TPA

(in this case, a copy of your newly relocated CP/M) to the

specified disk file. The MOVCPM command tells you how

many 256-byte pages to save. MOVCPM on your Commo-
dore 64 always tells you to save 37 pages.

To save your relocated verion of CP/M, enter:

SAVE 37 CPM48.COM

This command will write the relocated CP/M to a file

named "CPM48.COM". This is a full copy of a 48K version of

the CP/M operating system. You can use the saved copy of

CP/M in subsequent SYSGEN commands or for direct alter-

ation under DDT.

GETTING STARTED 47



4.4.3 Using SYSGEN

A version of CP/M that you have saved in a disk file cannot
be directly executed. You must first SYSGEN it to the sys-

tem tracks of a CP/M disk.

SYSGEN writes the specified version of the CP/M operat-

ing system to the proper locations on the system tracks of a
CP/M disk. SYSGEN can read a version of the operating sys-

tem from one of two places:

• The system tracks of diskette.

• A memory image of CP/M loaded into the TPA by the
MOVCPM or DDT programs.

If you are using a file containing a SAVEd version of

CP/M, you must first bring it into memory with the DDT
program. In our example, you enter:

DDT CPM48.COM

then exit from DDT with a GO command.
If your source for the new version of CP/M is the system

tracks of your disk or a memory resident image, you simply
enter:

SYSGEN

and SYSGEN responds with:

SOURCE DRIVE NAME

(OR RETURN TO SKIP)

At this point you can specify the drive (A or B) whose sys-

tem tracks you want read. If you simply hit the [
key, SYSGEN assumes that a copy of CP/M is already loaded
into the TPA.

Whatever way you get the CP/M version loaded into mem-
ory, SYSGEN will ask you:

DESTINATION DRIVE NAME

(OR RETURN TO REBOOT)

If you respond with a destination drive name (A or B),

SYSGEN will write CP/M to the system tracks of that drive.

48 GETTING STARTED



If you simply hit the El key, SYSGEN will reboot

from whatever disk is currenily in Drive A.

NOTE: IF you SYSGEN a CP/M system that is different in size from the

one you ran the SYSGEN under, DO NOT try to reboot from a disk con-

taining the new system. This will cause the operating system to crash

Re-insert the disk from which you loaded SYSGEN before you tell it to

reboot

To test a newly SYSGENed version of CP/M, you'll have to

start it from native mode on your Commodore 64.

4.5 THE COMMODORE 64
KEYBOARD AND SCREEN WITH
CP/M
The Commodore 64 has a full typewriter-style keyboard that

behaves assiirh when you are running CP/M. All of the

CP/M El shifted control codes operate as they are

supposed to. In addition, the Q key on your

Commodore 64 keyboard acts like a I |-C to produce

a warm boot of the CP/M operating sysiein.

In the Commodore 64 version of CP/M, you have the op-

tion of using only upper case or both upper and lower case.

You toggle between them using the Commodore key

on the keyboard. You can use the CONFIG utility to tell

CP/M to start with upper only or with upper/lower case en-

abled.

Table 5.3 contains a complete list of the special CP/M
control keys. These are identical to those defined for CP/M,
with a few additional functions taken from your Commo-
dore 64 keyboard.

The Commodore 64 graphics characters and screen color

control are not generally available to CP/M. But there is no
reason that you can't store values into your Commodore 64
6567 Video Interface Chip's control registers just as you do

when running in native mode. To arrive at the proper ad-

dresses for the control registers, examine Section 6.1.3,

which explains the address mapping between the Z80 and
6510 processors.

GETTING STARTED 49



The control values that you insert Into the registers are

the same as those you use in native mode. As an example,

suppose you want to use your Commodore 64 graphics

character set. Running in native mode, you simply touch

the graphics key to switch on the graphics character set.

From a CP/M program running under the Z80, you have to

control it directly through a store into the appropriate 6567

control register.

The character set selection control register is at

6510 address 53,272 decimal or *D018 hexadecimal

which converts to the Z80 address base:

Z80 address 49,176 decimal or *C018 hexadecimal

The character set control register normally contains a $17.

To invoke the graphics character set, you must store a $15

in the register:

MVI A,15H ;LOAD THE CONTROL VALUE IN A

STA 0C018H ,-STORE $15 IN THE 6567 CONTROL REGISTER

Once you've executed this code, the graphics character set

is available to you. This operation does not change the

character codes reaching your CP/M programs from the

keyboard—only the display is changed.

You can use the same technique to alter colors, activate

Sprites, or even play music through your Commodore 64

6581 Sound Interface Device. If you want to store char-

acters directly into the screen matrix, remember to store

Commodore 64 screen codes, not ASCII codes.

To use the dynamic features of your Commodore 64 from

CP/M. all you have to do is remember that the 6510 ad-

dresses for the control registers must be reduced by $1000

(4096) in your CP/M programs.

50 GETTING STARTED



CHAPTER '

CP/M
OPERATION

How to Use This Chapter

CP/M File Naming
Conventions
Input/Output Hardware

Conventions
CP/M Command Structure

CP/M Commands



This chapter tells you how to use CP/M on your Commodore
64. It is not a detailed lesson on CP/M and its internal work-

ings. It is an introduction to CP/M's conventions and nota-

tions, and an introduction to the commands that you can
use under CP/M.

If you want detailed information on the internal workings
of CP/M, get one of the many fine books listed in Appendix
B, the Bibliography. That level of detail is far beyond the

scope of this book.

5.1 HOW TO USE THIS CHAPTER
Section 5.2 describes the CP/M file naming conventions.

You should follow some reasonable conventions for naming
your own files so that you can easily identify their contents.

Section 5.3 discusses the CP/M disk identification con-

ventions. CP/M uses disk A and disk B; your Commodore
64 identifies these disks as disk and disk 1. Section 5.3

also tells you how CP/M differs when you use the VIC 1 54

1

or the CBM 4040 drive.

Section 5.4 describes the CP/M command structure and
gives a table of all the CP/M commands that you get with

your Commodore 64 CP/M system.

Section 5.5 provides brief descriptions of the CP/M com-
mands. If you need more detail, see one or more of the CP/M
books listed in Appendix B. Some books are more technical

than others, so find the one with the amount of detail you
are most comfortable with.

5.2 CP/M FILE NAMING
CONVENTIONS
When you are using CP/M on your Commodore 64, you
should follow the CP/M file naming conventions. CP/M files

have the general format:

[DISK-ID:] FILENAME [.TYPE]

52 CP/M OPERATION



where:

DISK-ID Is an optional disk drive identifier (such
as A or B) that is needed when you want to use a
file not on the currently logged disk.

FILENAME is a one- to eight-character name used
to identify your file to CP/M.

TYPE is an optional one- to three-character name
used to further identify your file.

Some examples of CP/M filenames are:

A:SAMPLE.BAS A BASIC sample program stored on

the disk on Drive A.

MY.TXT A text file.

PROGRAM.COM A program that is executable.

1 0/25/82 .DRY A diary entry.

CP/M lets you use any alphabetic or numeric character in

your file names, as well as some special characters. CP/M
reserves a few of the special characters for its own use. You
cannot use the following characters in a CP/M file name:

<>.,;: = ?*[]

With some software packages, files must be named with

specific types, such as SUB for a SUBMIT file or ASM for an
Assembly Language source file. Read the information with

your software packages to see if you need to follow any nam-
ing conventions for that package's files.

Even if you don't have to follow any specific rules in nam-
ing your files, you should try to use reasonable naming con-

ventions. In this way, when you get a directory listing (a list

of all the files on a disk), you will have some idea of what's

in the files.

A file named MORTGAGE.BAS is easier to recognize as

the set of source statements for a BASIC program that cal-

culates mortgage rates than a file named X127GY9.123. In

other words, it makes sense to name your data files in ways
that represent their contents. For example, a file named

CP/M OPERATION 53



01/15/83.DTA could contain the data you collected on Jan-

uary 15, 1983.

Since there are so many CP/M users (over 500,000 to

date), certain standard filename types have been adopted.

The most commonly used types are shown in Table 5.1.

Table S.l Commonly Used CP/M File Types

TYPE FUNCTION OR CONTENTS

*.ASM Assembly language source file

.BAK Backup file

.BAS BASIC program source file (for some
BASIC interpreters like CBASIC)

".COM Directly executable transient pro-

gram

.DAT Data file

.DOC Document or text file (required by
some word processing packages)

.HEX File containing data in hexadecimal

format; an Intel HEX format object

code file

.INT

*.LIB

.LST

.PRN

Output file from some compilers
(CBASIC, JRT PASCAL) that contains

intermediate code

Library file

Program listing (usually output from
a language processor like a compiler,

interpreter, or assembler)

Print file (usually output from an as-

sembler or compiler)

.PRT Print file (usually output from an in-

terpreter or compiler)

54 CP/M OPERATION



Table 5.1 Commonly Used CP/M File Types

TYPE FUNCTION OR CONTENTS

•SRC Source file from the CP/M User's
Group

*.SUB Command file for a SUBMIT run

•SYM Symbol table file (generated by some
compilers, assemblers, and inter-

preters)

•TEX Text file (required by some word pro-

cessors)

•TXT Text file (required by some word pro-

cessors)

*.**$ Either a temporary file or an improp-
erly saved (and unusable) file

NOTE: Those filename types marked with an asterisk (*) must be

adopted if you want to use associated software packages or sys-

tem functions. That is, all CP/M directly executable programs must

be named "filename.COM."

5.3 INPUT/OUTPUT HARDWARE
CONVENTIONS
CP/M has certain conventions that must be followed when
you are reading files from a disk or writing files to a disk.

The first disk drive physically attached to the system is

called drive A. The next is drive B. When you are using a

single 1541 disk drive, your Commodore 64 CP/M uses a
slightly different way of telling which disk is in the drive

(this is described in some detail below).

When you begin CP/M, you will be "logged" to drive A and
you will see the prompt "A>" on your screen. This means
that if you specify a filename in a command and you don't

CP/M OPERATION 55



specify a disk-id before the filename, the disk on drive A will

be searched for the file.

You can log to drive B by entering the command:

B:

After entering the B: command, any filename that you

specify without a disk-id preceding the filename will be read

from or written to drive B.

You can change back and forth between drive A and drive

B by simply entering the above command. You can tell

which drive you're currently accessing by looking at the

prompt: it will be A> when you're using drive A or B> when
you're using drive B.

Your Commodore 64 CP/M can use either the VIC 1541

single disk drive or the CBM 4040 dual disk drive. Read the

sections below that cover the type of disk drive you have

attached to your Commodore 64.

5.3.1 Loading Programs from Disk: Single
Drive

It is easy to load and run a CP/M program. You first place

the program disk into your disk drive and then enter the

filename followed by a carriage return, for example:

MYPROG <CR>

CP/M then goes to the currently logged disk and looks for

the file called MYPROG.COM. If CP/M finds this file, the

data in the file are read into the computer's memory and
CP/M begins executing those instructions.

If the file is not found on the disk, then CP/M prints the

filename followed by a question mark:

MYPROG?

In such cases, check to see if you have the correct disk in

the drive, log to the correct disk, or correct the program
name.
For a single-drive system, if you are logged to drive A and

your program is on drive B, then remove disk A from the

drive, insert disk B, and enter:

56 CP/M OPERATION



B:OTHERPGM <CR>

CP/M will first ask that the appropriate disk be placed in

the drive by writing:

INSERT DISK B INTO DRIVE 0, PRESS RETURN

You should put the appropriate disk into the drive and

press the ^jj33i kev - cp/M wil1 tnen search the disk

for the file called oTIIERPGM.COM, load the file, and run it.

5.3.2 Loading Programs from Disk: Dual
Drive

When using the CBM 4040 dual disk drive, you don't have

to physically change the disk in the drive when you want to

log to another disk. Since there are two drives, you can in-

sert two disks into the drive: disk A and disk B.

When you enter the B> command to log to disk B, CP/M

will not ask you to insert a disk into the drive. Instead,

CP/M will use the disk already in drive B.

If you want to change which disk is in a drive, you should

change the disk and then tell r.P/M that a different disk is

in the drive by entering a ^^^^ -C command. This makes

CP/M read the directory from ihe disk and keeps you from

writing over information that you want to keep.

You must have the Commodore 64 IEEE interface car-

tridge when you use the CBM 4040 dual disk drive. You

cannot plug the dual disk drive into the Commodore 64

without the interface cartridge.

5.4 CP/M COMMAND
STRUCTURE
Your Commodore 64 CP/M system includes a Console

Command Processor (CCP) through which you interact with

CP/M. The CCP reads and interprets the commands you

enter at the keyboard.

The CP/M commands are listed in Table 5.2 and de-

scribed in some detail later in this chapter.

CP/M OPERATION 57



In general, the CP/M commands are of two types:

• Built-in commands which are a part of the CCP it-

self. Being part of the CP/M operating system,
built-in commands are included whenever you load

CP/M.
• Transient commands which are loaded into the

Transient Program Area (TPA) from a disk and then

executed. Transient commands reside on the disk

as COM files.

Table 5.2 CP/M Commands
COMMAND BUILT-IN (B)

NAME or

TRANSIENT (T)

COMMAND FUNCTION

pgm-name T Load and execute the program
stored on the disk as file pgm-
name.COM.

X: B Change the currently logged disk

to disk x.

ASM Load the CP/M assembler and as-

semble the specified program from
the disk.

DDT Load the CP/M debugger (DDT)
and begin executing the debugger.

DIR B List the filenames in the disk di-

rectory.

DUMP Dump the contents of the specified

file to the screen in hexadecimal
format.

ED Load and execute the CP/M text

editor program.

ERA B Erase the specified file(s) from the
disk.

58 CP/M OPERATION



Table 5.2 (Continued)

COMMAND BUILT-IN (B)

NAME or

TRANSIENT (T)

COMMAND FUNCTION

LOAD

MOVCPM T

PIP T

REN B

SAVE B

STAT

SUBMIT

SYSGEN

Produce an executable (COM) file

from an assembled (HEX) file.

Recreate the CP/M system for the

specified memory size.

Copy specified file(s).

Rename the specified file.

Save the contents of memory as

the specified file on the disk.

Provide status information about
specified files, no file, or all files,

and list the number of available

bytes remaining on the disk.

Read the specified file and execute
the commands in a batch process-

ing mode.

Create a new CP/M system dis-

kette.

TYPE B Type the contents of the specified

file onto the screen.

USER B Change the currently logged user

number to the specified value.

XSUB T Allow the entering of data as well

as CP/M commands in a SUBMIT
file.

In addition to the commands listed in Table 5.2, your
CP/M system includes a number of built-in line editing

CP/M OPERATION 59



commands. The CP/M line editing commands, shown in

Table 5.3, have the general form:

where:

| means hold down the CONTROL key on your
Commodore 64.

x is one of the keys on your Commodore 64
keyboard.

Table 8.3 CP/M Built-in Line Editing Commands

COMMAND FUNCTION

-C Perform a CP/M warm-start.
or

-E Move to the beginning of the next line.

-H Delete one character and erase it from the

or screen.

-J Perform a carriage return and line feed.

-M Perform a carriage return,

or

-P Toggle printer/console output. On first use,

send all screen messages to the printer; one
next use, send all screen messages to the

screen.

-R Repeat the current command line.

-S Temporarily halt listing of data on the

screen. Press any key to continue listing.

-U Cancel current command line.

or

P3 Toggle between all upper case and upper/
lower case letters. H is the Commodore key.

60 CP/M OPERATION



5.5 CP/M COMMANDS
This section gives you a brief description of the Commodore
64 CP/M commands. It Is not Intended to be a detailed de-

scription of how CP/M commands operate, nor does it at-

tempt to describe every possible way you can use the CP/M
commands.

If you need to learn how CP/M works or If you need more
detail on how the commands work, you should purchase

one or more of the excellent CP/M teaching texts on the

market. Skim these books and pick those that present the

information In a way that you can easily understand.
The following notation is used in describing the CP/M

commands:
• Underlined words show arguments (parameters)

which you replace with your own values.

• BOLDFACE keywords must be entered exactly as

shown.
• A vertical bar

( |
) separates arguments where you

may select any one of the list of arguments.
• Square brackets ([ ]) are used to show optional

arguments. You select any or none of the arguments
listed, depending on your needs.

• Braces ({ }) show that you must choose one of the

arguments.

5.5.1 pgm-name (Load and Run a CP/M
Program)

Format: [dtsk-td:]filename<CR>

where:

dtsk-td Is an optional disk identifier.

filename is the name of the file containing the pro-

gram to be loaded and run. Programs must be
stored in files namedJiZename.COM.

Description:

CP/M programs are stored in files named
filename.COM. When you type the name of one of

CP/m OPERATION 61



these program files and hit the carriage return key,

CP/M does the following:

1. Searchs the currently logged disk or the disk

specified by disk-id for the program file

Jitename.COM.
2. Loads the program file into memory.

3. Begins executing the instructions in the program.

If the file is not found on the disk, CP/M prints a

message like this:

FILENAME?

When you get this message, make sure you have the

correct disk in the disk drive, that you've spelled the

program filename correctly, and that the program is

stored in a COM file.

Example 1:

To load and execute your program which is stored in

the file MYPROG.COM, enter:

MYPROG <CR>

CP/M searches the currently logged disk for the file

MYPROG.COM, loads the file, and begins executing the

instructions. If the file is not on the disk, you will see

the error message:

MYPROG?

Example 2:

You have a single drive system and are currently logged

to disk A. You want to load and run the program XYZ
from disk B. Enter the CP/M command:

B:XYZ <CR>

CP/M then responds with:

PLACE DISK B INTO THE DISK DRIVE AND HIT RETURN

62 CP/M OPERATION



Put the appropriate disk Into the disk drive and press the

J22E8 key. Then, CP/M searches for the file named
XYZ.COM, loads the file, and begins executing its instruc-

tions.

5.5.2 x: (Change the Currently Logged Disk)

Format: disk-id:

where:

disk-id is the disk identifier

Description:

Under CP/M, you are always "logged" to a disk. You
can tell which disk CP/M is using by looking at the

prompt message. If it's "A>", you're logged to disk A; if

it's "B>", you're logged to disk B.

You can change the logged disk by entering:

DISK-ID:

CP/M then asks you to insert the appropriate disk into

the disk drive and hit the carriage return. CP/M re-

members which disk you're currently logged to and will

request another disk if you ask for a file or program
and use the disk-id qualifier.

Example:
You have a single drive system and are currently logged

to disk A. You want to log to disk B. To do this, you
would enter:

B: <CR>

CP/M then writes:

INSERT DISK B INTO DRIVE 0, PRESS RETURN

When you insert the disk into the drive and hit the

carriage return, CP/M is logged to that disk. The CP/M
prompt will now be:

B>

CP/M OPERATION 63



5.5.3 ASM

Format: ASMfilename [.parms]
where:

filename is the name of the file containing the pro-

gram to be assembled. The file must be named
filename.ASM.
parms contains up to three characters specifying

the drive(s) for the source file, HEX file, and PRN
file.

Description:

The ASM command loads and executes the CP/M As-

sembler which processes 8080 instructions. The CP/M
Assembler:

1

.

Assembles the assembly language statements con-

tained in the file/flename.ASM.

2. Generates an object file in hexadecimal format and
places the object file infilename.HEX.

3. Produces a print file infilename. PRN.

The parms string is an optional character string which tells

the assembler where to read and write its files. You can

specify up to three characters in parms. Each character

position has a special meaning:

• Position 1: The source drive for the file containing

the assembly language statements.

• Position 2: The destination drive for the object

(HEX) file.

• Position 3: The destination drive for the print (PRN)

file.

If you specify a "Z" for positions 2 and/or 3. the assembler

will not generate a HEX (position 2) or PRN (position 3) file.

If you specify an "X" for position 3, the listing will appear on

your screen instead of in a file. Table 5.4 lists the ASM error

messages.

64 CP/M OPERATION



NOTE: CP/M was written for the Intel 8080 microprocessor. The Z80 pro-

cessor in your Commodore 64 is compatible with the 8080 processor but

offers a much larger instruction set, more internal registers, and other

advantages.

If you want to use the full Z80 instruction set, you'll have to get an

assembler that recognizes the Z80 instructions.

Table 5.4 ASM Error Messages

ERROR CODE MEANING

D Data error. The data element cannot be

placed into the specified data area. For

example, you cannot put the value 500 In

a one-byte area.

E Expression error. The assembler could not

evaluate the expression.

L Label error. The label is used out of con-

text. This could be a duplicate label.

N Not implemented. You tried to use a fea-

ture that is not Implemented, such as

using macros.

O Overflow. The expression Is too compli-

cated to evaluate.

p Phase error. A label's value changed be-

tween passes of the assembler.

R Register error. The value specified as a

register does not match the value needed

by the op code.

S Syntax error. The statement contains a

syntax error and could not be evaluated.

Tj Undefined lable. You used a label which

does not exist in the program.

V Value error. There is an improperly

formed operand in the expression. ^

CP/M OPERATION 65



Examples:
ASM APROG.BBB Assemble the assembly language

program contained In the file

B:APROG.ASM and put the object

file In B:APROG.HEX and the print

file in B.APROG.PRN.

ASM PGM2.BZZ Assemble the assembly language
program contained in the file

B:PGM2.ASM. Do not generate
either the object (HEX) file or the

print (PRN) file.

ASM PGMFOR.AAX Assemble the assembly language
program contained in the file

A.PGMFOR.ASM. Put the object

file (PGMFOR.HEX) onto Disk A.

Print the listing on the screen.

5.5.4 DDT

Format: DDT
[
[disk-id:] Jilename[.type]

]

where:

disk-id is an optional disk identifier.

filename. type is a valid CP/M filename for the file

containing the Information to be loaded and proc-

essed by DDT.

Description:

DDT is the CP/M Dynamic Debugging Tool which you
can use to interactively test and debug programs. You
can load any file into memory using DDT. If you load

an executable file, you can directly control its execu-

tion from your console.

NOTE: You can also use DDT to look at a file in both ASCII and

hexadecimal format.

66 CP/M OPERATION



DDT loads the file into the TPA (Transient Program
Area) in memory. You can then use the commands
shown in Table 5.5 to operate on the information in

the TPA.

You must know 8080 assembly language instruc-

tions to use DDT. If you don't know the assembly lan-

guage instructions, don't try to use DDT. Appendix B
gives a list of some of the currently available Z80 as-

sembly language books.

NOTE: DDT recognizes only the subset of Z80 instructions that is identi-

cal to the Intel 8080 microprocessor instruction set.

Table 5.5 DDT Commands
COMMAND MEANING

As Assemble. Begin entering assem-
bly language instructions at ad-

dress s.

^[s [«/]] Display. Display the contents of

memory in both hexadecimal and
ASCII formats. Begin at address s

and end at address /. If you don't

specify/, 16 display lines are

shown. If you don't specify s, the

starting address is the current
display address.

FsJ.c Fill memory. Fill memory with the

hexadecimal byte c. Begin storing

the byte c at location s and end at

location/. You use the F command
to fill a block of memory with one
value, for example, all zeros or

blanks.

G[s] [,bl [,b2]] Go. Begin executing the instruc-

tions at location s with optional

breakpoints at locations bl and

CP/M OPERATION 67



Table 5.5 (Continued)

COMMAND MEANING

b2. If you don't specify location s,

execution begins at the current

address.

HcJ,c2 Hexadecimal sum/difference. Add
(or subtract, depending on the

signs) the hexadecimal constants

cl and c2.

lfllename[.type] Input. Insert the filename
filename. type into the default file

control block for the TPA. You
must use an R command to actu-

ally read the file.

L[s[/]] List. List the assembly language
mnemonics beginning at address s

and ending at address /. If you
don't specify a value for s, the list-

ing begins at the current address.

If you don't specify a value for/, 1

2

lines are listed.

MsJ.d Move a block of information. Move
the contents of a block of memory.
Begin moving data from address s

and end at address/. Move the in-

formation to address d.

R[o] Read a disk file. Read the file

whose filename and type are in the

file control block into the program
area beginning at offset o. You use

an I command to set the file in-

formation in the file control block.

If you don't specify an offset value,

the file is read into memory be-

ginning at address 100H.

68 CP/M OPERATION



Table 5.5 (Continued)

COMMAND MEANING

Ss Examine and modify memory
values. DDT begins processing at

location s. All addresses and their

contents are listed. If you hit a

carriage return, the contents are

not changed. If you want to change
the value, enter a new value before

you hit the carriage return. To
stop the listing, hit a period (.).

T[n] Trace program execution. DDT
traces execution and displays reg-

isters and flags for n steps, n may
be 1 through 65535. If you don't

specify a value for n, DDT executes

and traces one statement.

U[n] Untrace. This performs the same
processing as the T command ex-

cept that the registers and flags

are not displayed for each step.

X[r] Examine and modify CPU regis-

ters. The examine command lets

you examine and optionally modify

the contents of the CPU registers

shown in Table 5.6. If you don't

specify a value for r, all of the CPU
registers are displayed in the for-

mat shown in Table 5.7.

Table 5.6 DDT CPU Registers/Status Flags

NAME MEANING VALUE

STATUS FLAGS:
C Carry flag 0/1

Z Zero flag 0/1

M Minus flag 0/1

CP/m operation 69



Table 5.6 (Continued)

NAME MEANING VALUE
STATUS FLAGS:

E Even parity flag 0/1

I Interdiglt carry 0/1

REGISTERS:
A Accumulator 0-FF

B BC register pair 0-FFFF

D DE register pair 0-FFFF

H HL register pair 0-FFFF

S Stack pointer 0-FFFF

P Program counter 0-FFFF

Examples:
DDT

DDT PROG.COM

Loads DDT and waits for you to

enter commands.

Loads DDT and reads the file

PROG.COM into the TPA (address

100H). DDT then waits for you to

enter commands.

Table S.7 DDT CPU Register/Flag Display Format

CfZfMfEflf A=bb B = dddd D =dddd H =dddd S =dddd
P=dddd inst

where:

C, Z, M, E, and I are processor status flags

shown in Table 5.6

A, B, D, H, S, and P are the registers shown
in Table 5.6

/ is a or 1 flag value

bb is a byte value (0 through 255)

dddd is a double byte value

inst is the disassembled 8080 instruction at

the location addressed by program counter
(P)

70 CP/M OPERATION



5.5.5 DIR

Format: DIR [disk-id:] [filename .type]

where:

disk-id is an optional disk identifier.

filename is an optional valid one- to eight-character

CP/M filename.

type is a valid one- to three-character CP/M file type.

You need to specify a type if you use thefilename
parameter.

Description:

You use a DIR command to display the directory of files

on a certain disk disk-id. If you don't supply a disk-id

parameter, DIR lists the directory of the disk in the

drive currently logged to the system.

You can use the CP/M wildcard (* and ?) characters

in your filename and type parameters. These char-

acters are acted upon as follows:

• question mark (?)

Use a question mark (?) to represent a single char-

acter in a filename or type. DIR will use the ? to

match on any character that occupies that position

in the filename or type. For example,

DIR PGM?.COM

will display all files that have the first three char-

acters PGM, any fourth character and the type COM.
This format will match only files with names
PGMx.COM. It will not match PGMxxx.COM.

• asterisk (*)

Use an asterisk (*) to represent an entire filename or

type or the remainder of a filename or type. DIR will

match on any characters in the positions indicated

by the *. For example,

DIR PGM*.COM

CP/M OPERATION 71



will display all files that have the first three char-

acters PGM, regardless of the length of the file-

name, and the type COM.

If you use a disk-id value, DIR will display only those files

on the indicated disk. If you omit the disk-id value, DIR
displays the files on the currently logged disk.

Examples:

DIR Display the directory of the currently

logged disk. The names of all flies on
the disk are shown.

DIR B: Display the directory of Disk B.

DIR B:TEST.COM Display the directory information for

file TEST.COM on Disk B. You can

use this form of the DIR command to

check whether the file you want is on
that disk.

DIR *.BAK Display the information from the

currently logged disk for all files

which are of the type BAK.

DIR TEST*. BAK Display the information from the

currently logged disk for all flies that

are of the type BAK and whose
filenames contain the first four char-

acters TEST. This will display the

files TEST. BAK, TEST1.BAK,
TESTXXX.BAK, TEST 1234. BAK, or

any other file with the first four

characters TEST and type BAK.

DIR TEST??.BAK Display the information from the

currently logged disk for all files that

are of type BAK and have a four- to

six-character filename beginning
with the letters TEST. This will dis-

play the files TEST. BAK, TEST1.
BAK, or TESTXX.BAK but will not

display the file TEST1234.BAK

72 CP/M OPERATION



5.5.6 DUMP

Format: DUMP [disk-id. filename .type

where:

disk-id is an optional disk identifier.

filename is valid CP/M filename of the file whose

contents are to be displayed.

type is a valid one- to three-character CP/M file type.

Description:

You use a DUMP command to display the contents of a

file in hexadecimal format. The file information is

shown on the screen.

Examples:

DUMP A-.DATA.TST Dump the contents of the DATA.TST
file on Drive A to the screen. The file

information is shown in hexadecimal

format.

DUMP MY.DTA Dump the contents of the MY.DTA
file, which is on the currently logged

disk, to the screen.

5.5.7 ED

Format: ED [disk-id-.Jilenameltype] [[disk-id2;] [fllena-

me2[.type2]]]

where:

disk-id is an optional disk identifier.

filename is the name of the file containing the data

to be edited.

type is a valid CP/M file type for the file containing

the data to be edited.

CP/M OPERATION 73



disk-id.2 is an optional disk identifier needed when
you want the edited file to be written to a disk other

than the disk being edited.

Jilename2 is the name of the output file when you
want the edited filename to differ from the original

filename.

type2 is the type for the output file when you want
the edited file to have a different type than the orig-

inal file.

Description:

You use the ED command to run the CP/M context

editor to create or change CP/M source language, data,

and text files. ED works on the data in its buffer, using

a character pointer to keep track of its current posi-

tion. Be sure that you understand how to use ED; you
could lose your edited file if you're not careful!

If the file exists when you enter the ED command,
CP/M opens it and prepares to operate on it. If the file

does not exist, CP/M creates a new file with the

specified name. CP/M names its temporary file

filename.*** while you are editing the information.

When you are finished editing the file, CP/M changes

the name of the original file to filename.BAK and
writes the edited information to the file named
filename.type when you tell ED to write the data. If

you don't tell ED to write the edited information to the

file, you will lose the edited data. You must tell ED ev-

erything]

If you want to write the edited file to a disk other

than the one containing the original file, specify a

disk-id.2 parameter.

If the file that you are editing is too large to fit in

memory, you must tell CP/M's ED processor when to

swap information to its work files. The amount of data

that can be processed without swapping depends on
the size of your CP/M system. The standard Commo-
dore 64 CP/M system is a 44K version.

You use the control characters shown in table 5.8

and the commands shown in table 5.9 when you are

editing a file using ED.

74 CP/M OPERATION



Remember that the CP/M ED editor is not a very

complex editor. It works in its buffers, and you must

tell it everything. After you enter the command that

tells ED what file to edit, you must tell ED to read in a

specified number of lines from the file. In the same

way, after you have finished editing, you must be sure

to close the processing with an E command to save

your edited data.

NOTE: Some ED commands (F, I, N, and S) when entered in upper case,

automatically translate all subsequent lower case entries to upper case.

If you enter these commands in lower case (f, i, n, s), the automatic

translation to upper case is not done, and data can be entered in both

upper and lower case

Table 5.8 CP/M ED Control Characters

CHARACTER MEANING

-L Used as a logical carriage

return/line feed within a

string.

-X Line delete.

-Z String terminator/separator.

3 Delete the previous character.

Table 5.9 CP/M ED Commands*

COMMAND FUNCTION

n: Move the character pointer to the

beginning of line n.

[+/-]n Move the character pointer up (-)

or down ( + ) n lines and type the

line.

nA Append n lines from the original

filefilename to the buffer in mem-
ory.

CP/M OPERATION 75



Table 5.9 (Continued)

COMMAND FUNCTION

OA

#A

[+/-]B

[+/-]nC

[+/-]nD

E

Append enough lines from the file

to half fill the buffer.

Append enough lines from the file

to fill the buffer or reach the end of

file.

Move to the top (B) or bottom ( -) of

the buffer.

Move the buffer character pointer

forward (+) or backward (-) n
characters in the buffer.

Delete n characters from the buf-

fer. Delete the characters before

(-1) or after (+) the character
pointer.

End the ED session. Rename the

original file to filename.
BAK. Close the files and save the

new file.

nFstringi
A
Z]

H

Find the character string string n

times. If you don't supply a value

for n, the string is found only once.

You use the | | -Z (

A
Z) to end

the string when you want to enter

another ED command on the same
line as the F command. This com-
mand performs an automatic
translation to upper case. To find a

character string that includes
lower case letters, use the f form of

this command.

Save the new (edited) file. Rename
the original file to filename. BAK.

76 CP/M OPERATION



Table 5.9 (Continued)

COMMAND FUNCTION

Re-edit the file using the new file as

the original file. This is the same
as entering an E (end edit) com-
mand and then running the ED
editor again on the newly saved

file.

KCR> Entrr insert mode. You must enter

a QES -Z PZ) to end insert

mode. When you use an I com-
mand, you can enter only upper-

case characters. The character

pointer is moved to the end of the

inserted text when you enter the

|
-Z. To enter both upper-

case and lower-case information,

use the I command described be-

low.

IstringrZ) Insert the character string string at

the position in the buffer pointed

to bv the character pointer. The
BBBHB -Z marks the end of the

string lo be inserted. The character

pointer is moved to the end of the

inserted string. You can enter only

upper-case characters with the I

command. To insert both upper-

case and lower-case information,

use the istrtng command described

below.

i<CR> Enter insert mode. You must enter

a B2E3I "z (^z ) to end insert

mode. When you use an i com-
mand, you can enter both upper-

case and lower-case characters.

The character pointer is moved to

CP/M OPERATION 77



Table 5.9 (Continued)

COMMAND FUNCTION

the end of the inserted text when
you enter the WSTfM -Z.

istring [
A
Z] Insert the character string string at

the position in the buffer pointed

to bv the character pointer. The

J -Z marks the end of the

siring lo be inserted. The character

pointer is moved to the end of the

inserted string. You can enter both

upper- and lower-case characters

with the i command.

nJstring*Zstring2*Zstring3 [

A
Z]

Juxtapose strings. Find stringl.

Add strtng2 to the end of stringl

and delete all characters from the

end of string2 up to but not includ-

ing the first character of string3 .

You use the optional final |

-Z (

A
Z) when you want to enter an-

other ED command on the same
line.

[+/-]nK Delete the following (+) or previous

(-) n lines.

[+/-]nL Move the character pointer up (-)

or down (+) n lines. If n is zero (0),

move the character pointer to the

beginning of the current line.

nMcommandsl A
Z] Execute the ED commands n

times. If n is zero (0) or one (1), re-

peat the ED commands until an

error occurs. You use the terminat-

ing WSRzIM -Z (

AZ) to enter an-

78 CP/M OPERATION



Table 5.9 (Continued)

COMMAND FUNCTION

other ED command on the same
line. Any ED commands after the

~Z are executed only once and are

not treated as part of the M com-
mand.

nfistring [ *Z] Find the nth occurrence of the
character string string. Ymi use the
optional terminating

| ^^J -Z
(~Z) when you want to enter an-

other ED command on the same
line. The N command performs an
automatic translation from lower
case to upper case. If you want to

find a string containing lower-case

letters, use the n form of this

command.

End the ED session and keep the

original file. Do not apply any of

the changes made during the ses-

sion.

[+/-]nP Display n pages. Each page is 24
lines. Display the n pages before

(-) or after ( + ) the current position

of the character pointer. If you
supply a zero (0) for n, the current
line and the next 23 lines are
listed.

9 Abandon the editing session. Do
not save the new (edited) file. Re-

turn to CP/M.

RJfilename] Read the file and insert the text

into the buffer. Move the character

pointer to the end of the inserted

CP/M OPERATION 79



Table 5.9 (Continued)

COMMAND FUNCTION

text. If you supply afilename, ED
reads the file filename. LIB. If you
don't supply a value for filename,
ED reads the file X$ $$$*$$. LIB.

nSstringl *Zstring2 [~Z]

Find string 1 and replace it with
string2. Repeat this substitution n
times. If you do not supply a value

for n, the substitution is performed

nnrc You use the terminating
KBffflB -Z (~Z) when you want to

enter another ED command on the

same line. The S command per-

forms an automatic translation

from lower case to upper case. If

you want to use lower-case letters

in your strings, use the s form of

this command.

[+/-]nT Display the previous {-) or follow-

ing (+) n lines. If n is zero (0), or if

n is not supplied, display the cur-

rent line. B#T displays the entire

buffer.

[+/-]U Translate all characters in the buf-

fer to upper case. Plus (+) turns on
the translation. Minus (-) turns off

the translation.

[+/-/0JV Turn on (+) or off (-) the line

number display. The displays the

amount of free buffer space in

bytes and the total buffer size.

[n]W Write the following n lines to the

temporary output file

80 CP/M OPERATION



Table S.9 (Continued)

COMMAND FUNCTION

Jllename.$$b. If you do not specify

a value for n, only the current line

is written to the file.

[n]X Write the following n lines to the

temporary file X***M**.LIB. You

can retrieve these lines with an R
command (this is an easy way to

move a block of lines). If n is zero

(0), ED will DELETE the
X$$$$$$$.LIB file.

nZ Wait n seconds before resuming
ED processing.

'NOTES: You can use the operand nl::n2 for any n or n operand in the

ED commands shown in this table. If you use the nl::n2 form, the ED

processor will operate on the lines nl through n2. If you use this form

and o">'« e'the' »> or "2, ED assumes the current line for the missing

operand.

You can use a # for n in the ED commands. # means to use the largest

possible value (65535) for n

Many of the ED commands show a +/— form. You do not need to specify

the plus (+) sign. You do need to specify the minus (— ) sign if you want

to move backward in the file

The F, I, N, and S commands perform an automatic translation to upper

case. If you want to enter both upper and lower case data, use the

commands f, i, n, and s.

Example:

ED PGMTST.ASM Edit the file PGMTST.ASM. If the file

exists, you must remember to read in

the data with an A command before

attempting to edit it.

CP/M OPERATION 81



5.5.8 BRA

Format: ERA [disk-id-.Jilename.type

where:

disk-id is an optional disk identifier.

filename is a valid CP/M filename.

type is a valid CP/M file type.

Description:

You use an ERA command to erase one or more files

from your disk. If you don't specify a disk-id parame-
ter, the file is erased from the currently logged disk.

ERA accepts the wildcard (*J notation for the
filename and type parameters. This allows you to

erase a group of files with a single command. Be care-

ful that you don't erase files that you want to keep
when you use the wildcard notation.

Examples:

ERA TEST.DTA Erase the file TEST.DTA from the
currently logged disk.

ERA B:MY.PGM Erase the file MY.PGM from disk B.

ERA *.BAK Erase all files with a type BAK from
the currently logged disk.

ERA A:*.* CAUTION. Erase all files from disk A.

(CP/M asks you whether you really

want to erase all fimes from the disk.)

ERA TEST.* Erase all files with the filename TEST
from the currently logged disk. This
would erase, for example, TEST.DTA,
TEST.PGM, TEST.ASM, TEST. BAK,
TEST.xxx.

82 CP/M OPERATION



5.5.9 LOAD

Format: LOAD [disk-id-.yilename

where:

disk-id is an optional disk identifier.

filename is the name of the file containing output

from the assembler.

Description:

You use a LOAD command to process the output from

the assembler (see the description of the ASM com-

mand) and produce an executable program file. The

input file must be named Jilename. HEX. The output

file is namedJilename.COM.
You run the output from the LOAD processor by

entering the filename and hitting a carriage return

(see the description on loading and executing a CP/M

program in Section 5.5.1).

Example:

LOAD ASMPGM2 Process the file ASMPGM2.HEX
(which was created by the assembler)

and produce an executable program

in the file ASMPGM2.COM.

5.5.10 MOVCPM

Format: MOVCPM [ { *
I size } ] [

*
]

where:

the first * tells CP/M to calculate the amount of

memory available for its use.

size is a two-digit number from 20 through 48

which is the maximum amount of memory available

for CP/M in your Commodore 64. You use 44 for a

44K version of CP/M.

CP/M OPERATION 83



the second * tells CP/M to leave the new version in

memory for later SYSGEN or SAVE command proc-

essing.

Description:

You use a MOVCPM command to configure (prepare) a

new copy of your CP/M system. Changing CP/M to ex-

pect a different memory size is called "moving" the sys-

tem. The MOVCPM command operates in either of

these ways, depending on which parameters you use:

1. "Move" CP/M and immediately execute the new,
different sized system. Do not save it on disk.

2. "Move" CP/M and prepare the new system to be
saved to disk by a later SYSGEN or SAVE com-
mand. The new CP/M system is NOT written to

the disk. You must use a SYSGEN or SAVE com-
mand to actually write out the new version of the

system.

If you do not specify any parameters and use a

MOVCPM command like this:

MOVCPM <CR>

CP/M will determine how much memory is available,

create a new system, and immediately use the new sys-

tem.

If you specify the first parameter, you can tell CP/M
how much memory it can use by:

• Using the * which tells CP/M to use all available

memory.
• Using the size parameter which tells CP/M to use

sizeK bytes of memory.

You can use any decimal integer between 20 and 48 for

the size value.

If you want to save the new version of CP/M on a
disk, you must use the second * parameter and you
must supply a first parameter (either size or *). You
can use this type of command:

MOVCPM * * <CR>

84 CP/M OPERATION



CAUTION: MOVCPM WILL ONLY CREATE A NEW VERSION OF CP/M.

THE NEW VERSION IS NOT SAVED TO A DISK UNTIL YOU USE A SAVE

OR SYSGEN COMMAND!

Examples:

MOVCPM Create a new version of CP/M, use all

available memory, and immediately

execute the new version. Do not save

this version.

MOVCPM 40
* Create a new version of CP/M using

40K of memory. Do not execute the

version but prepare it to be saved to

disk through a SAVE or SYSGEN
command.

MOVCPM 28 Create a 28K version of CP/M and
execute it. Do not save this version.

5.5.11 PIP

Format: PIP
or

PIP destination =source\parameter]

where:

destination tells where you want to copy the file to.

destination is in the form:

[disk-id:]fllename.type

source tells which file to copy, source has the same
format as destination.

parameter is one or more valid PIP parameters sepa-

rated by zero or more blanks and enclosed in square

brackets [ ].

Description:

You use PIP, CP/M's Peripheral Interchange Program,

to copy files. It doesn't matter what's in the file. PIP

CP/M OPERATION BS



simply copies from the destination file to the source

file. The source and destination files can be on the

same disk or can be on different disks.

You can specify only the dtsk-id for the destination

when the file is to be copied to a file with the same
filename. type on another disk. You can use the

wildcard (*) notation for any part of the source
filename and/or type.

You use the parameters, or PIP commands, shown
in Table 5.10 to have PIP perform some operations on

the file during the copy process.

You can use PIP in two different ways:

1. Invoking PIP as a program by entering:

PIP <CR>

In this use, PIP is loaded and returns an * on the next

line. You can then enter PIP commands, one per line,

until you have finished copying all the files you want to

copy. You end the PIP session by hitting a carriage re-

turn when PIP prints its * prompt message.

2. Invoking PIP with a command string, by entering:

PIP A.NEW.DTA=B:OLD.DTA <CR>

In this use, PIP is loaded and copies the file

B:OLD.DTA to the new file A:NEW.DTA. After the copy-

ing is complete, PIP reboots CP/M and returns control

to CP/M.

PIP can also copy from device to device. For this type of op-

eration, you can use any of the devices shown in Table 5.11.

PIP also uses some "devices" to perform special operations.

These are shown in Table 5.12.

You can use PIP to copy the contents of several files to one

file (concatenate several files). You do this by specifying the

source filenames, separated by commas. For example, to

copy files FILEl.DTA, FILE2.DTA, and FILE3.DTA to the

single file ALLDATA.BAK. you use the command:

PIP ALLDATA.BAK=FILE1.DTA,FILE2.DTA,FILE3.DTA

In the above example, the entire contents of FILEl.DTA are

copied to ALLDATA.BAK. Next, PIP copies the entire con-

86 CP/M OPERATION



tents of FILE2.DTA to ALLDATA.BAK, beginning the copy at

the end of the current contents of ALLDATA.BAK (the end

of the copied FILE1.DTA). FILE3.DTA is then copied at the

end of the FILE2.DTA data in ALLDATA.BAK.

NOTE: Be careful when concatenating ASCH files. ASCII files end with a
A
Z ( QQ] -Z) that PIP copies, along with the data, into your output

file. This produces a file with multiple end-of-file markers embedded in

it. Many programs will stop reading the file at the first * Z.

Table S.IO PIP Command Parameters

COMMAND FUNCTION

Dn Delete all characters after the nth

column. Use this when you want to

send data to your printer and the

data are longer than your printer's

carriage. You get only the first n

characters.

E Echo the characters to the console

during the copy operation.

F Remove form feed characters dur-

ing the copy operation. For feed

characters are ASCII value OCH or

-Lru.

Gn Get the file from a different user

area. The n can be any decimal in-

teger between and 15.

H Check the files for correct Intel

Hexadecimal format records.

I Ignore any null records when
transferring Intel Hexadecimal rec-

ords. Null records are those that

contain only 00H.

CP/M OPERATION 87



Table 5.10 (Continued)

COMMAND FUNCTION

L Convert all upper-case letters to

lower-case letters during the copy

operation. Only the letters A-Z are

converted to a-z. All other char-

acters are unchanged.

N Append a line number to the be-

ginning of each copied line. A line

Is a record that ends in an ASCII

CR/LF (carriage return/ line feed),

which you usually insert when you
press the El ^ey. ^ne line

numbers begin ai one (1) and are

incremented by one (1).

O Copy object files and non-ASCII
files. Treat the |^QJ| -Z (

A
Z;

end-of-file marker as any other
character.

Pn Add a page feed (form feed) every n
lines copied. The ASCII form feed

character is| | -L (*L) or

OCH. You use this when you are

copying from a file to your printer.

Qs * Z Copy only a section of the file. Stop

the copy operation whni PIP finds

the strings. ThelBESB"2 (

A
Z)

marks the end oi the string to be

found. The characters in string s

are converted to upper case only

when you specify the destination

and source parameters when you
invoke PIP. The conversion to

upper case is not done when you

load PIP into memory and enter

several commands to PIP's prompt
of*.

88 CP/m OPERATION



Table 5.10 (Continued)

COMMAND FUNCTION

Ss^Z

Tn

W

Copy system files. System files have

the SYS attribute.

Copy only a section of the file be-

ginning with the first occurrence of

the string s. The E339 z ( ~ z )

marks the end of the string s. See

the description of lower- to upper-

case conversion for the s string in

the 9 command description.

Set tab stops at every n column.
This is useful when you are send-

ing output to your printer from a

file. The ASCII tab character is 09H
or Q223 - 1 (

A
I)

Verify the copy operation by com-
paring the source and destination

files after the copy is complete.

Override the read only attribute

and copy into a read only (R/O) file.

Zero the parity bit (8th bit) on
ASCII characters.

Examples:

PIP A:FIRST.DTA=B:TEST.DTA

Copy the file from disk B called

TEST.DTA to the file on disk A called

FIRST.DTA.

PIP B:=A: Copy all files from disk A to disk B.

CP/M OPERATION 89



PIP CHAPTl.BAK=CHAPT.ONE

Copy the file CHAPT.ONE to the file

CHAPT1.BAK. Both files are on the

same disk.

PIP CON:=TEST.DTA

Print the file TEST.DTA on the con-

sole.

PIP B:BACKUP.PGM=A:PROG234.COM[R]

Copy the system file PROG234.COM

on disk A to BACKUP.PGM on disk B.

PIP X.Y=A.B,C.D Copy the two files A.B and CD to the

file X.Y.

PIP

*B:=A:SYSFILE.XXX[R]

*A: =B:WORDPROG.COM

*B.=A.*.BAK

*<CR> Copy several files. First, copy the sys-

tem file SYSFILE.XXX from disk A to

disk B. Then copy the program

WORDPROG.COM to disk A. Finally,

copy all files that have the type BAK
from disk A to disk B.

Table S.ll PIP Logical Devices

NAME DEVICE
CON: Console display as PIP output.

Keyboard as PIP input.

LST: The CP/M list device (printer) for PIP

output.

PRN: A special form of the CP/M LST
device. PRN handles tabs, determines

page breaks, and number lines.

90 CP/M OPERATION



Table 5.12 Special PIP Devices

NAME DEVICE
NUL: Send 40 null characters (ASCII value

Is zero) to the file or device.

EOF: Send an end-of-flle mark (ASCII

value Is 1AH) or AZ lEEST z) to the

ASCII (not binary) file or device.

5.5.12 REN

Format: REN

Format: KEJi[disk-td:]new-jlle =old-Jtle

where:

dtsk-ld Is an optional disk Identifier.

new-file Is the new filename. This must be a valid

CP/M filename of the formJilename [.type].

old-Jlle Is the current filename. This must be a valid

CP/M filename of the form filename[.type].

Description:

You use a REN command to change the name of an
existing file. The current filename old-Jlle is changed

to the new filename new-file. You cannot use the

wildcard form of a CP/M filename when you use the

REN command. You must specify a valid CP/M file-

name, but you can specify a blank type.

If you are renaming a file that is on the currently

logged disk, you don't need to specify the disk-id pa-

rameter. You cannot specify two disk-id parameters.

REN changes the name of the file on the same disk on

which the file resides; It does not copy the file to an-

other disk. If you want to change the filename and also

move the file to another disk, use the PIP command.

Examples:

REN A:PRODPGM.COM=TESTPGM.COM

Change the name of the file

CP/M OPERATION 91



TESTPGM.COM on disk A to

PRODPGM.COM.

REN DATA.ARC = DATA.182

Change the name of the file DA-

TA. 182 on the currently logged disk

to DATA.ARC.

REN B:DATAFILE=TEST.DTA

Change the name of the file

TEST.DTA on disk B to DATAFILE.

5.5.13 SAVE

Format: SAVE page-num [disk-id:]filename[.type]

where:

page-num is the number of 256-byte pages from the

TPA to save to the specified file.

disk-id is an optional disk identifier.

filename. type is the name of the file to which CP/M
will write the page-num*256 bytes.

Description:

You use a SAVE command to save page-num pages

(where 1 page = 256K bytes) to the specified file. CP/M
copies the information from the TPA which begins at

location 100H. You also use the SAVE command when
you use the MOVCPM command to create a new ver-

sion of CP/M.
You must calculate the number of pages to be saved

by dividing the amount of data by 256. You can use

DDT to determine the size of your program. When you
load a program into the TPA using DDT, DDT will tell

you the size of the loaded data. Then, calculate the

number of 256-byte pages that this represents.

For example, if you want to save the information
from location 100H through 4FFH into the file

NEWPGM.CM, you would use the command:

92 CP/M OPERATION



SAVE 4 NEWPGM.COM

You use the disk-id parameter when you want to save

the information to a disk that is not the currently

logged disk.

Examples:

SAVE 1 A.B Save the contents of memory loca-

tions 100H through 1FFH to the file

A.B.

SAVE 10 B:PGM.TST

SAVE 5X

Save the contents of memory loca-

tions 100H through AFFH to the file

PGM.TST on disk B.

Save the contents of memory loca-

tions 100H trough 5FFH to the file X
on teh currently logged disk.

5.5.14 STAT

Format: STAT
or

STAT command
where:

command is a valid STAT command as described

below.

Description:

You use a STAT command to display or change status

information for a CP/M disk, file, group of files, device,

or user number.
To display status information, you use one of these

forms of the STAT command:

• STAT [disk-id:]

This shows the number of bytes remaining on disk

disk-id. If you omit disk-id, STAT provides the In-

CP/M OPERATION 93



formation on the currently logged disk. The STAT
message is (see Table 5.13 for the valid options):

disk-id: Option, Space: nnK

• STAT [disfc-id:]DSK:

This shows the drive characteristics for disk disk-

id. If you omit disk-id, STAT provides information

related to the currently logged disk. The STAT in-

formation is:

disk-id: Drive Characteristics

1088: 128 Byte Record Capacity

136: Kilobyte Drive Capacity

64: 32 Byte Directory Entries

64: Checked Directory Entries

128: Records / Extent

8: Records / Block

34: Sectors / Track

2: Reserved Tracks

• STAT [disk-id:yilename[.type]

This shows the characteristics of the file(s)

specified. You can use the wildcard (*) notation for

the filename and/or type parameters. If you don't

specify a disk-id parameter, STAT uses the cur-

rently logged disk.

The STAT information for the specified file(s) is

shown as:

Recs Bytes Ext Ace
nnn nK e Options disk-id:jilename.type

...for each file specified...

Bytes Remaining on disk-id: nnK

where:

nnn is the number of 128-byte records for the file.

nK shows the file size in 1024-byte blocks.

e shows the number of extents used for the file.

94 CP/M OPERATION



Options shows a valid STAT option from Table 5. 13.

disk-id:Jilename.type shows the filename.

If you specify a file which is not on the disk, STAT re-

turns an error message:

FILE NOT FOUND

• STAT {DEV: I VAL: I USR:}

This shows the information for the CP/M devices

(DEV:), STAT commands and external peripheral

options (VAL:), or user numbers (USR:). This func-

tion refers to the I/O byte, which is not implemented

and always returns the default device assignments.

Table S.13 STAT Command Options

OPTION MEANING

DSK: Show the characteristics of the

specified drive.

DEV: Show the characteristics of the

CP/M system devices.

USR: Show the files related to each
USER number on the specified

disk.

VAL: Show the possible STAT com-
mands and devices.

NOTE: The DEV- and VAL- options refer to the I/O byte, which is not

implemented in the Commodo re 64 BIOS.

To change status information, you use one of these forms

of the STAT command (valid STAT attributes are shown in

Table 5.14):

• STAT disk-id: =R/0

This changes the disk disk-id to a temporary read

only mode (R/O).

CP/M OPERATION 95



• STAT [disk-id:yilename[.type]=*x

where x is {R/O I R/W I SYS I DIR}

This changes the specified file(s) to read only (R/O),

read/write (R/W), system (SYS), or nonsystem (DIR).

You can use the wildcard (*) notation for the

filename and/or type parameters. To change all

your program files on disk A to read only, you enter

the command:

STAT A:*.COM *R/0

Table 5.4 STAT Command Attributes

ATTRIBUTE MEANING

DIR Set the non-SYSTEM attribute for

the file(s).

R/O Set the file or disk to read only.

R/W Set the file to read/write.

S Show the size(s) of the file(s) based

on the file last record number(s).

SYS Set the SYSTEM attribute for the

filets).

Examples:

STAT *.* Show the statistical information for

all files on the currently logged disk.

STAT A.B Show the statistical information for

the file A.B on the currently logged

disk.

STAT DSK: Show the statistical information for

the currently logged disk.

STAT *.COM $R/0 Set all files on the currently logged

disk which have a type COM (CP/M

program files) to read only.

STAT NEW.DTA $R/W

Set the file NEW.DTA to read/write.

96 CP/M OPERATION



5.5.15 SUBMIT

Format: SUBMIT [disk-id:]filename [parameters]

where:

disk-id is an optional disk identifier.

filename is the name of the file containing the

CP/M commands. This file must be named
filename. SUB.

parameters are optional parameters passed to the

SUBMIT commands.

Description:

You use a SUBMIT command to send a group of com-
mands to CP/M for execution. SUBMIT makes your

Commodore 64 operate in batch mode where, with a

single command, you can execute any number of pro-

grams or utilities.

The file containing the commands must have a type

SUB. This file can contain any CP/M commands.
CP/M creates a file called $*$.SUB as a temporary

work file when you execute a SUBMIT command.

NOTE: All commands in a SUBMIT file must be in upper case.

For example, you could have these commands in file DISK
DTA.SUB:

DIR

STAT *.*

ERA *.BAK

STAT DSK:

To execute all four of these CP/M commands, you simply

enter:

SUBMIT DISKDTA <CR>

CP/M OPERATION 97



Remember, CP/M then executes the commands in the file in
the order in which the commands appear in the file.
SUBMIT processing only executes commands. It does not
pass any information to the programs it executes. If you
want to pass data to the programs, use the XSUB com-
mand.
You can chain from one .SUB file to another. Whenever a

SUB file finds another SUBMIT command, the first file is

stored and the second file becomes active. When the second
file's commands are finished, the first .SUB file becomes
active at the command following the SUBMIT command.
For example, you could have these two files:

File A.SUB contains:

STAT DSK:

SUBMIT B

STAT DSK:

File B.SUB contains:

ERA *.BAK

DIR

When you enter the command:

SUBMIT A

the following commands are executed:

STAT DSK:

ERA *.BAK

DIR

STAT DSK:

You can also pass parameters to the .SUB file. The parame-
ters are sequentially numbered in the file and have the
form:

*n

9B CP/M OPERATION



where:

n starts at 1 and is incremented by 1.

The parameters can be any information required by the

commands in your .SUB file. They can be filenames, disk

id's, file types, or anything that you need. SUBMIT does a

straight substitution of the parameter values for the pa-

rameter indicators ($n) in the .SUB file before passing the

commands to CP/M. The first parameter goes to all occur-

rences of $1; the second to $2, etc.

Suppose you want to check the status of your disk and

then edit a file. You could have a file called DSKEDIT.SUB
that contains this information:

STA $1:DSK:

ED $2. $3

STAT $1:$2.$3

Then, to check the status of Disk A and edit the file

MY.DTA, you would use this submit command:

SUBMIT DSKEDIT A MY DTA

SUBMIT processing replaces the parameter indicators with

the values in your SUBMIT command and the data in file.

When passed to CP/M for processing, DSKEDIT.SUB looks

like this:

STAT A:DSK:

ED MY.DTA

STAT A:MY.DTA

When you are using SUBMIT parameters, you can enter

these special characters through the parameter string:

• To enter a * as data, you must enter two consecutive

**. This is transferred to the command line as a *.

Thus, to enter the value" $XY" as a parameter, you

must use *$XY.

• To enter a control character, use the up-arrow sym-

hol CM followed by the control character. To enter

X, you would enter the character string ~X.

CP/M OPERATION 99



You can have a SUBMIT command as the last command in

a .SUB file. This lets you chain from one .SUB command
file to another.

Examples:

SUBMIT STARTUP This executes the CP/M commands
in the file called STARTUP. SUB.

SUBMIT NEW A B This executes the CP/M commands
in the file called NEW.SUB. The value

"A" is passed to any $1 indicators in

the file. The value "B" is passed to

any $2 indicators.

5.5.16 SYSGEN

Format: SYSGEN [[disk-id:]fllename.type]

where:

disk-id is an optional disk identifier.

filename. type is the name of the file that will con-

tain the new copy of the system.

Description:

You use a SYSGEN command to create a new copy of

your CP/M operating system. The CP/M system is

stored on special tracks called the system tracks

(tracks and 1). These tracks never appear in the file

directory listing and you cannot read or write to these

tracks as part of processing any normal program.

You need the system tracks on any disk from which
you may do a warm or cold start. It's a good idea to

have a copy of the system on most disks that contain

programs. Whenever you enter a|J [J-C (

A
C), CP/M

reloads part of its system tracks I ihe BDOS and CCP)
in a warm start.

You use the SYSGEN command to copy these tracks

from one disk to another or to create a new copy of the

system after you have used a MOVCPM command.
You use a SYSGEN command in one of these three

ways:

100 CP/M OPERATION



1. To copy your CP/M system from one disk to an-

other. You do not make any changes to the system;
you simply copy it.

2. You use MOVCPM to create a different sized ver-

sion of CP/M and you use SYSGEN to copy it to a

disk.

3. You use DDT to make special changes to your copy
of CP/M and you use SYSGEN to write the system
to a disk.

SYSGEN does not destroy any information currently

on the user area of a disk. SYSGEN simply writes a

new copy of the CP/M system on the disk.

If you specify a disk-id parameter, SYSGEN does not
ask for the source drive but uses the value you selected

for disk-id.

If you want to create a new copy of CP/M after using
MOVCPM to create a new version, you follow this pro-

cedure. The text that you enter is shown in boldface.

The messages from CP/M are shown in italics.

SYSGEN <CR>
COMMODORE 64 SYSGEN VERSION 2.0
SOURCE DRIVE NAME
(OR RETURN TO SKIP) <CR>
DESTINATION DRIVE NAME
(OR RETURN TO SKIP) B<CR>
DESTINATION ON B, THEN TYPE RETURN <CR>
FUNCTION COMPLETE

To copy a version of CP/M from one disk to another,
follow the above procedure but supply the appropriate
answers for the source and destination drives.

NOTE: If you SYSGEN onto your current system disk a version of CP/M
Thar is a different size from the one you're running, you CANNOT warm
start the system. The location of operating system components will not

match and the CP/M will crash.

CP/M OPERATION 101



Example:
To copy the system tracks from your current disk to an-
other disk, enter:

SYSGEN <CR>

and answer the questions that CP/M asks.

5.5.17 TYPE

Format: TYPE [disk-id:filename. type

where:

disk-id is an optional disk identifier.

filename. type is the name of the file to be listed on
your screen.

Description:

You use a TYPE command to list an ASCII format file

on your screen. If you don't specify a disk-id value,

CP/M uses the currently logged disk. You must specify

a valid CP/M filename. TYPE does not accept the
wildcard (*) notation.

You can use a •»;! -P (^P) before you enter your
TYPE command and the listing will appear on your
screen and on your printer. All commands and data
continue to appear on both the screen and the printer

until you enter another ~ P.

You can stop the TYPE listing by pressing any key.

You can temporarily stop the listing by pressing a

SUU9 -s ( * S); you restart the listing by pressing any
key.

Remember that TYPE displays the contents of the
specified file, assuming that the file contains ASCII
characters. If you TYPE a program file (.COM), you will

see garbage on your screen. Be sure that you are list-

ing a text file when you use TYPE.

Examples:
TYPE A:BILLS.LST List the contents of the file on disk A

called BILLS.LST.

102 CP/M OPERATION



TYPE X List the contents of the file called X
on the currently logged disk.

5.5.18 USER

Format: USER [user-num]

where:

user-num is a decimal integer between and 15.

Description:

You use a USER command to display and change the

current user number. CP/M assumes a default user

number of zero (0).

Once you change the user number, you can access

only those files associated with the new user number.
You can always enter a user number to return to the

default setup.

To display the current user number enter:

USER <CR>

To change the current user number to 5 enter:

USER 5

You should not change the user number unless you
want to protect certain files from use by those who do
not know the associated user number. In a single-user

CP/M system, it's generally unnecessary to change the

user number.

Examples:

USER 2 Change the user number to 2.

USER Display the current user number.

CP/M OPERATION 103



5.5.19 XSUB

Format: XSUB

Description:

You use an XSUB command when you want to enter

more than commands in a .SUB file. XSUB is a subset

of SUBMIT processing and CANNOT be entered as a

response to the CP/M prompt. XSUB may appear only

in a SUBMIT (.SUB) file. Read the description of the

SUBMIT command for full details on how .SUB files are

processed.

XSUB must be the jlrst command in your .SUB file.

You can enter parameters on an XSUB command in

the same way as for a SUBMIT command.
XSUB allows you to enter data that would normally

be entered through the keyboard for some programs. If

you are using a program that accepts buffered console

input (uses BDOS function 10), then the program will

accept the answers from the XSUB file instead of wait-

ing for you to enter data from the keyboard. Not all

programs do this, but all the CP/M utilities and com-
mands do accept data in this manner.

Example:

You want to submit a file that will run DDT and load

the file you specify. Your file called DDTRUN.SUB con-

tains:

XSUB

DDT

l$l.$2

R

You can submit this file and specify that the file

WORDPROC.DTA be read into memory through DDT
by entering:

SUBMIT DDTRUN WORDPROC DTA

104 CP/M OPERATION



This SUBMIT command accepts the DDT commands to

read the file WORDPROC.DTA into memory by process-

ing the information after the XSUB command.

CP/M OPERATION 105



\ s<p



CHAPTER

CP/M ON THE
COMMODORE 64

The Structure of CP/M
The BOOT Programs
The BIOS Programs
CP/M Disk Organization
The CP/M BDOS
Calling a Z80 Program from
the 6510
Calling a 6510 Program from
the Z80
Program Execution under
CP/M

Z80 Schematic
Commodore 64 Schematic



In this chapter, you will find technical information about
implementing CP/M on your Commodore 64. You will need
this information only if you intend to make changes or ad-

ditions to CP/M as supplied with your Commodore 64 and
its Z80 cartridge.

CP/M was one of the first microcomputer operating sys-

tems designed to run on machines of more than one manu-
facturer. It is written in Intel 8080 Assembler language. The
Z80 add-on processor on your Commodore 64 executes a

superset of the 8080 machine language. Any program writ-

ten for the 8080 processor will run on the Z80, but the re-

verse may not be true.

When CP/M is running on your Commodore 64, the 6510
main processor and the Z80 add-on processor are alter-

nately active. The two processors trade control of the com-
puter according to what operations are required. Because
device drivers already reside in your Commodore 64 operat-

ing system, all input and output is performed by the 6510.

The Z80 runs only the CP/M operating system, its utilities,

and applications.

In addition to the standard functions required by the

CP/M operating system, you can access your own special

purpose routines running in 6510 native mode. This is use-

ful, for example, if you want to attach an instrument to the

optional IEEE interface cartridge on your Commodore 64.

You could then easily code a driver for the instrument and
gain access to it through a well defined, and protected,

interface.

6.1 THE STRUCTURE OF CP/M
The principal component of CP/M is the Basic Disk Operat-

ing System (BDOS). All requests for operating system ser-

vices — disk input/output, printer output, screen output —
are carried out through a set of standard calls to the BDOS.

NOTE: It is possible to call entry points in the CP/M BIOS directly. This

technique is NOT recommended unless you are very sure of what you are

doing. WARNING. Direct BIOS calls may be incompatible with future

CP/M releases.

108 CP/M ON THE COMMODORE 64



A second major component of CP/M is the Console
Command Processor (CCP). The CCP analyzes and inter-

prets the commands that you enter from the keyboard, ini-

tiating whatever action you request. Of the resident CP/M
system, the CCP occupies the lowest memory areas (see

Figure 6.3).

Transient programs (those not a permanent part of the

BDOS) are loaded into the Transient Program Area (TPA)

and may, if they need the space, overlay the CCP when
executing.

If a program executing in the TPA does overlay the CCP,
the CCP must be reloaded when the transient program
terminates. You will see this CCP reload operation (a "warm
boot") as a line of asterisks appearing on your screen after a

program has finished.

The final major component of CP/M is the Basic Input/

Output System (BIOS). This has nothing to do with the

BASIC language. The BIOS is the component of CP/M that

allows CP/M to be run on a variety of machines. The BIOS
forms a bridge between the BDOS and the individual char-

acteristics of the machine that it runs on. Each machine
has a specially tailored BIOS that supports the hardware
and peripherals attached to it.

The CP/M BIOS is much like the CBM Kernal in your

Commodore 64. Like the Kernal, the BIOS contains a set of

standard routines that give you access to hardware func-

tions.

Your Commodore 64 has a unique BIOS that provides

easy access to the standard Commodore 64 peripherals,

either serial or IEEE.

6.1.1 How CP/M Works on Your Commodore
64

Four specially tailored assembly language programs and the

CP/M operating system are required to run CP/M on your

Commodore 64. Two of the assembly language programs
run under the 6510 microprocessor and two under the Z80
microprocessor:

• 6510 CP/M BOOT program (BOOT65)
• Z80 CP/M BOOT program (BOOT80)

CP/M ON THE COMMODORE 64 109



• 6510 BIOS (BIOS65)
• Z80 BIOS (BIOS80)

The BOOT programs "bootstrap" CP/M. That is, they load

it into memory, initialize some areas, and begin its execu-

tion. Once the BOOT programs have completed their tasks,

they are no longer needed and the memory they occupied is

used for other purposes.

CP/M comes from Digital Research as a core operating

system. It needs an add-on software component called a

BIOS (Basic Input/Output System). The BIOS contains a

set of entry points that perform specific "primitive" tasks

for CP/M, such as:

• Set the track number for the next read or write op-

eration.

• Write a character to the printer.

• Read a character from the keyboard.

CP/M is not concerned with how these tasks are per-

formed. All this work is taken care of in the custom BIOS

written specifically to support a certain hardware environ-

ment. It is this BIOS that allows CP/M to run many differ-

ent machines equipped with many different peripherals.

On your Commodore 64, the CP/M BIOS is in two parts.

One part runs under the Z80 add-on processor (BIOS80)

and the other under the 6510 Commodore 64 main proc-

essor (BIOS65). This arrangement allows the 6510 to serve

as an Input/output processor for the Z80, handling all disk,

printer, keyboard, and screen input or output.

The 6510 part of the BIOS initiates execution of CP/M
under the Z80 processor by transferring control to the Z80
BOOT program, which loads CP/M and BIOS80. Whenever a

processor is switched on, it resumes execution at the in-

struction immediately following the instruction that

switched it off. This means that when the Z80 returns con-

trol to the 6510, execution will resume within BIOS65.

When a CP/M program, running on the Z80, requests an

input/output operation, the Z80 BIOS places a Junction

code and any required parameter values at predetermined

locations in memory. Remember, memory is shared be-

tween the two processors, which makes it very easy for

them to pass data back and forth.

110 CP/M ON THE COMMODORE 64



Once these parameter values are in place, BIOS80
switches the Z80 out and the 6510 in. The 6510 resumes
execution in the 6510 portion of the BIOS. BIOS65 exam-
ines the function code passed to it by BIOS80 and initiates

the indicated action.

Once the 6510 has completed the action, BIOS65 places

return values and/or flag values into predetermined loca-

tions and switches control back to the Z80 processor.

Under the Z80 processor, execution resumes where it left

off in BIOS80. BIOS80 examines the shared memory areas

to determine the success or failure of the requested func-

tion and carries out any other action necessary to complete
the function.

6.1.2 6510 Memory Use

Figure 6.1 shows the memory allocation as seen from the
6510 running in native mode. Figure 6.2 shows details on
the BIOS65 memory area.

6510 CP/M Memory Map
6510
ADDRESS

$FFFF

*F000

SE000

$D000

$1000

*0800

*0000

6510 KERNAL ROM

6510 I/O SYSTEM

48K RAM AVAILABLE FOR Z80
RUNNING CP/M

BIOS65 AND SHARED DATA AREAS

0400 TO 07FF SCREEN RAM
0000 TO 03FF ZERO PAGE AND 6510 STACK

CP/M ON THE COMMODORE 64 111



The addresses shown are for the 6510 microprocessor. For

Z80 addresses, subtract $1000 hexadecimal from the ad-

dresses shown (see Section 6. 1.3 for an explanation of Z80/
6510 address conversion).

NOTE: If you odd the IEEE interface cartridge to your Commodore 64

system, you can run only a 44K version of CP/M The top 4K ($CO0O

—

$D00O) of the CP/M 48K area is used to handle the IEEE interface car-

tridge

BIOS65 Memory Map

6510
ADDRESS

*1000

$0F00

$0E00

*0D00

oocoo
BIOS65

$0B00

*0A00

$0900
SHARED DATA

$0800
DISK I/O BUFFER

The addresses shown are for the 6510 microprocessor. For

Z80 addresses, add OFOOO hexadecimal to the addresses

shown (see Section 6.1.3 for an explanation of Z80/6510
address conversion).

112 CP/M ON THE COMMODORE 64



6.1.3 Addresses under CP/M

You can see from the memory map in Figure 6.3 that the

Z80 processor uses the memory between $1000 and
$BFFF—a 48K byte area. CP/M, however, makes use of fixed

areas in the zero page ($0000- $01 00) of memory. This area

is also required by the Commodore 64 operating system.

To avoid a conflict in the use of the zero page and to pro-

vide space for BIOS65, all Z80 addresses have $1000 added

to them. Thus, the Z80 address $0000 becomes actual ad-

dress $1000. Table 6.1 shows the mapping between Z80
addresses and actual memory addresses.

NOTE: If you are using the optional IEEE interface cartridge, you have

only 44K bytes available for CP/M. The IEEE bus access routines require

an additional 4K at the high end of the CP/M memory ($B0O0- $BFFF).

Table 6.1 Z80 to 6S10 Actual Address Mapping

Z80 ADDRESS ACTUAL (6510) ADDRESS
0000->0FFF 1000->1FFF
1000->1FFF 2000->2FFF
2000->2FFF 3000->3FFF
3000->3FFF 4000->4FFF
4000->4FFF 5000->5FFF
5000->5FFF 6000->6FFF
6000->6FFF 7000->7FFF
7000->7FFF 8000->8FFF
8000->8FFF 9000->9FFF
9000->9FFF A000->AFFF
A000->AFFF B000->BFFF
B000->BFFF C000->CFFF
C000->CFFF D000->DFFF
D000->DFFF E000->EFFF
E000->EFFF F000->FFFF
F000->FFFF 0000->0FFF

NOTE: Notice that to access the 6510 low addresses, you reference the

Z80 high addresses.

CP/M ON THE COMMODORE 64 .113



6.1.4 Z80 Memory Use

The amount of memory available to CP/M on your Commo-
dore 64 depends on your hardware configuration. If you are

using the standard Commodore 64 serial disk drives and
printer, CP/M can occupy a maximum of 48K bytes. If you
have acquired the IEEE interface cartridge, CP/M can oc-

cupy a maximum of 44K bytes. The IEEE interface car-

tridge consumes 4K at the high end of the CP/M address

space (see Figure 6.1).

You can, of course, generate a CP/M system that is

smaller than the maximum available space. You can do that

if you need space for a routine that must run in Commo-
dore 64 native mode (under the 6510 processor). You can,

for example, generate a 40K CP/M version and have 8K (or

4K if you have the IEEE cartridge) available for your Com-
modore 64 native mode routine. Figure 6.3 shows a dia-

gram of the Z80 address space.

Z80 Memory Map

ADDRESS
44K 48K

$AA00 $BB00
BIOS80

$9C06 $AC06
BDOS

$9400 $A400
CCP

TPA

$0100 $0100

(44K-33.792 bytes)

(48K-37.888 bytes)

$0000 $0000
ZERO PAGE

Many microcomputer operating systems use the zero page
of memory (addresses between $0000 and $0100) to hold
important values. Both CP/M and your Commodore 64

114 CP/M ON THE COMMODORE 64



operating system do this. Table 6.4 shows the contents of

the CP/M Zero Page.

Table 6.2 CP/M Zero Page

ADDRESS CONTENT

$0000- $0003

$0004

Contains a jump instruction to the

warm start entry point in the BIOS.

Contains the current default disk

drive number (0=A and 1=B) in the

low order 4 bits and the I/O byte in

the high order 4 bits.

$0005- $0007

Contains a jump instruction to the

BDOS main entry point. The value

stored in locations $0006- $0007 is

the lowest address required by CP/M.

You also use this jump instruction

(or the address) when you make di-

rect BDOS calls.

$0038- $003A

This is Restart Location 7 and is

used by DDT for programmed break-

points (an RST 7 instruction causes

a call to this location).

$005C- $006C

This is the first default file control

block for use by transient programs.

$006C- $007C

This is the second default file control

block for use by transient programs.

CP/M ON THE COMMODORE 64 115



Table 6.2 (Continued)

ADDRESS CONTENT

*007D- $007F

This location contains the random
record position for random file access

via the first default file control block.

$0080- $00FF

This is the default 128-byte disk
input/output buffer.

This area also receives the command
line that you enter when your pro-

gram is loaded by the CCP.

NOTE: The areas of ihe zero page no* shown in this table are reserved

for future use. You should not use any of these areas in programs you

write unless you are sure of their use

6.2 THE BOOT PROGRAMS
The BOOT programs— BOOT65 and BOOT80— are used

to load CP/M from disk. Once they have completed this

task, the memory they occupy is used for other purposes.

The BOOT65 program is in the file called "CP/M" that you
LOAD and RUN to start execution of the CP/M operating

system on your Commodore 64. You can find a listing of

this program in Appendix E. The actual assembly language
program source is available on one of your CP/M system
diskettes.

You LOAD and RUN BOOT65 as you would any BASIC
program on your Commodore 64. If you LIST it, you will see

that it contains a single BASIC statement:

10 SYS (2036)

This statement transfers control to the actual BOOT65 code
located at decimal address 2036.

The program then reads in the BIOS65 and BOOT80 pro-

116 CP/M ON THE COMMODORE 64



grams and places them at the correct locations in memory.
Finally, BOOT65 transfers control to the startup code in

BIOS65.
The BOOT80 program is a Z80 assembly language pro-

gram that is the first program to execute when the Z80
processor is switched on. You can find a listing of this prog-

ram in Appendix E. The actual assembly language program
source is available on one of your CP/M system diskettes.

BOOT80 is loaded by the BOOT65 program at the Z80
reset address $0000 (6510 address $1000). When the Z80 is

first turned on, it always begins execution at address
$0000.

BOOT80 loads:

• Z80 BIOS (BIOS80)
• CP/M CCP (CP/M Command Processor)

• CP/M BDOS (Basic Disk Operating System)

When these programs are loaded, BOOT80 transfers control

to the cold start entry point in BIOS80, thus beginning ac-

tual CP/M operating system execution.

6.3 THE BIOS PROGRAMS
The BIOS (Basic Input/Output System) is the specially tai-

lored link between the CP/M operating system and the in-

dividual peripherals — printer, disk drives, screen —
attached to your Commodore 64.

Each computer that runs CP/M has its own unique BIOS.
On your Commodore 64 the BIOS is in two parts:

• BIOS65 executes under the 6510 main processor.

• BIOS80 executes under the Z80 add-on processor.

These two portions of the BIOS operate together to make
your Commodore 64 peripherals available to CP/M.
Why are there two programs for the BIOS? Your Commo-

dore 64 already has code in place to handle its peripherals.

Thus more memory is made available for CP/M and your
CP/M-based applications by simply providing a link to that

existing code, rather than trying to re-implement the
peripheral-handling code on the Z80.

In operation, BIOS80 is called from CP/M with a request

CP/M ON THE COMMODORE 64 117



for an input/output operation. BIOS80 places required pa-

rameter values and a function flag in certain memory loca-

tions, then switches control from the Z80 back to the 6510

Commodore 64 main processor.

The 6510 resumes execution where it left off in BIOS65.

BIOS65 examines the function code stored in memory to

find out what it should do, carries out the task (usually an

input/output request), places the result in a predetermined

memory location, and switches the Z80 back on.

The Z80 resumes execution where it left off in BIOS80.

BIOS80 retrieves the results passed to it from BIOS65 and
returns the proper information to CP/M.
BIOS80 is called from the CP/M BDOS to perform the fol-

lowing functions:

• cold start boot
• warm start boot

• console (keyboard) status check
• get keyboard character (console input)

• write character to screen (console output)

• print a character (lister output)

• move disk head to the home position

• select disk

• set track to read/write

• set sector to read/write

• read disk sector

• write disk sector

• check printer status (lister status)

• sector translation

The punch and reader functions of the BIOS are meaning-

less on your Commodore 64. These are null routines in

BIOS80.
Some of the functions listed above simply cause values to

be placed in predefined memory locations. Others result in

a transfer to the 6510 portion of the BIOS where the actual

work is performed.

Before BIOS80 switches control back to the 6510, it

places aJunction code at location $F900 ( $0900 relative to

the 6510). This code, which currently ranges from to 9

and 255, tells BIOS65 what action is required. These func-

tion codes and their meanings are shown in Table 6.3.

118 CP/M ON THE COMMODORE 64



Table 6.3 BIOS80/BIOS6S Function Codes

NUMBER FUNCTION
Read the specified sector

1 Write the specified sector

2 Get a character from the keyboard
3 Write a character to the screen

4 Check the printer status

5 Write a character to the printer

6 Disk format command
7 Jump to 6510 address $0E00
8 Jump to 6510 address $0F00
9 Jump indirect via a 6510 address stored

at $F906
10->254 Reserved for future use
255 Execute a cold start reset on your

Commodore 64

Table 6.4 BIOS80/BIOS65 Communication Addresses

ADDRESS
Z80 6510
$F900 $0900

$F901 $0901

$F902 $0902

$F903 $0903

$F904 $0904

$F905 $0905

CONTENT

Command register: contains
one of the function codes as

shown in Table 6.2.

Data register: used to pass data

and error indicators between
the two BIOS.

Sector register: contains the
current sector number for disk

read and write requests.

Track register: contains the cur-

rent track number for disk read

and write requests.

Drive register: contains the disk

drive number for disk read and
write requests.

Keyboard register: contains the

last character read from the
keyboard.

CP/M ON THE COMMODORE 64 119



BIOS65 and BIOS80 communicate with each other
through a series of contiguous memory locations as shown
in Table 6.4.

6.4 CP/M DISK ORGANIZATION
Your Commodore 64 CP/M BIOS programs provide a com-
pletely compatible interface between your disks and the

CP/M BDOS. All disk-related functions expected by the

CP/M BDOS are available through your BIOS programs.

The organization of a CP/M disk is different from the

organization of a standard Commodore 64 disk. The CP/M
disk has somewhat less capacity than a Commodore 64
format disk.

A Commodore 64 CP/M disk is formatted as 35 tracks

containing 17 256-byte sectors (0- 16) where track 1 Is

the outermost track and track 35 is the innermost track. A
Commodore 64 CP/M disk can hold a maximum of 136,000
characters of user data.

Notice that the full disk capacity (152,320 characters) is

not available for user data storage.

Table 6.5 shows the allocation of tracks on your Commo-
dore 64 CP/M format disk.

Table 6.5 CP/M Disk Track/Sector Allocations

TRACK SECTOR CONTENT
1 BOOT65 (Commodore 64 file

"CPM")
1 l->4 BIOS65
1 5 BOOT80
1 6->13 CP/M CCP (Command Proc-

essor)

1& 14->16 CP/M BDOS
2 0->10
2 11->16 BIOS80
3 0->7 CP/M Disk Directory

3 8->16 CP/M Disk Space
4- >17 0->16 CP/M Disk Space
18 0->l6 Commodore 64 Directory

19--35 0->16 CP/M Disk Space

120 CP/M ON THE COMMODORE 64



NOTE: The Commodore 64 Directory written on track 18 allows you to

start CP/M from Commodore 64 running in native mode This directory

shows that only a single file— CPM— exists on the disk. The standard

Commodore 64 Block Availability Map (BAM) indicates that the disk is

complete!/ full.

6.5 THE CP/M BDOS
The CP/M Basic Disk Operating System (BDOS) provides a

standard interface between CP/M application programs and
the hardware on which they run. All input/output and
operating system service requests are routed through the

BDOS. Because of this, you don't have to write device-

specific code into your application program for every system

that it might run on. The device-specific code for a particu-

lar system is written only once — in the CP/M BIOS.

The standard BDOS interface means that software can be

written and run on any system able to support CP/M, as

long as the software developer stays within the BDOS stan-

dard.

The 39 BDOS functions (numbered 0-37 and 40 dec-

imal) perform tasks valuable in almost any application. For

example, they

• Read a character from the keyboard.

• Write a character to the keyboard.

• Open a disk file.

• Print a string.

• Write to the printer.

• Delete a file.

• Create a file.

For a list of the BDOS functions, see Table 6.6.

You call the BDOS from Z80 Assembler or other lan-

guages through the BDOS jump vector at Z80 address
*0005. This jump vector contains a single jump instruc-

tion:

JMP BDOS-ADDRESS

CP/M ON THE COMMODORE 64 121



The bdos-address varies with the size of the CP/M system

you have generated. The JMP instruction itself is placed at

location *0005 when CP/M is loaded.

To use the BDOS functions, you code:

CALL 5

When the BDOS has completed the function, it returns con-

trol to the statement following the CALL statement.

NOTE: Bytes 6 and 7 of the BDOS jump vector contain the lowest address

required by CP/M (stored as low byte/high byte). This means that your

application prog ram can use memory up to, but not including, this ad-

dress.

BDOS functions are numbered. Some require that you

pass to them the parameter values or the address of a pa-

rameter in certain registers. Some return an indicator or

error code in a register.

When calling a BDOS function, you always load the

BDOS function code in register C. If the function requires

that you pass it parameters, you place:

• Single-byte parameters in register E.

• Double-byte parameters in register pair DE.

If the function returns a value to you, you find:

• Single-byte returns in register A.

• Double-byte returns in register pair HL.

NOTE: The BDOS does NOT preserve values stored in the Z80 registers.

If you want to protect values stored in registers, you should push them

onto the stack before you call the BDOS. You can then pop them off the

stack on return from the BDOS call.

122 CP/M ON THE COMMODORE 64



6.5.1 Sample BDOS Function Call

As an example of a BDOS function call, we will use Function
1, the Console (keyboard) Input function. Function 1 re-

turns in register A the last character entered from the

keyboard. To use Function 1, you can write code like the

following:

MVI C,l ,LOAD FUNCTION 1 INTO REGISTER C

CALL 0005H ,CALL THE BDOS JUMP VECTOR

WHEN THE BDOS HAS A CHARACTER, IT RETURNS HERE

REGISTER A CONTAINS THE INPUT CHARACTER

STA KEYCHAR ;STORE REGISTER A IN KEYCHAR

VARIABLE

Table 6.6 BDOS Functions

FUNCTION DESCRIPTION
(Register C)

O SYSTEM RESET

INPUT: NONE
RETURN: NONE

Returns control to the CCP and resets CP/M
as though you rebooted.

CONSOLE INPUT

INPUT: NONE
RETURN: A <- character input

Reads a character from the keyboard. Exam-
ines the character to see if it is a CP/M con-

trol character.

CP/M ON THE COMMODORE 64 123



Table 6.6 (Continued)

FUNCTION DESCRIPTION
(Register C)

CONSOLE OUTPUT

INPUT: E <- character to display

RETURN: NONE

Writes a character to the screen.

READER INPUT

INPUT: NONE
RETURN: A <- character read

This function is not supported on your
Commodore 64.

PUNCH OUTPUT

INPUT: E <- character to punch
RETURN: NONE

This function is not supported on your
Commodore 64.

5 LIST OUTPUT

INPUT: E <- character to print

RETURN: NONE

Writes a character to your printer.

124 CP/M ON THE COMMODORE 64



Table 6.6 (Continued)

FUNCTION DESCRIPTION
(Register C)

6 DIRECT CONSOLE I/O

INPUT: E <- character to display (output)

E <- OFFH (input)

RETURN: A <- character (input)

A <— status (output)

Performs raw console input (read from
keyboard) and output (write to screen).

Characters are transferred through the

BDOS without being examined or changed.

7 GET I/O BYTE

INPUT: NONE
RETURN: A <- I/O byte

The I/O byte function is not supported on
your Commodore 64.

8 SET I/O BYTE

INPUT: E <- new I/O byte

RETURN: NONE

The I/O byte function is not supported on
your Commodore 64.

9 PRINT STRING

INPUT: DE <- string address

RETURN: NONE

Writes the character string to the screen.

The string must terminate with a "$".

CP/M ON THE COMMODORE 64 125



Table 6.6 (Continued)

FUNCTION DESCRIPTION
(Register C)

lO READ CONSOLE BUFFER

INPUT: DE <- buffer address

RETURN: characters in buffer

Reads from the keyboard until a carriage re-

turn or CTL-M is entered or until the

keyboard buffer overflows.

11 GET CONSOLE STATUS

INPUT: NONE
RETURN: A <- console status

Checks the keyboard status. A contains

OFFH if a character is ready; 00H if not.

12 RETURN VERSION NUMBER

INPUT: NONE
RETURN: HL <- version number

Returns the CP/M version number.

13 RESET DISK SYSTEM

INPUT: NONE
RETURN: NONE

Resets the entire disk system to its initial

state.

126 CP/M ON THE COMMODORE 64



Table 6.6 (Continued)

FUNCTION DESCRIPTION
(Register C)

14 SELECT DISK

INPUT: E <- disk number to select

RETURN: NONE

Selects a disk (A=0 and B=l).

15 OPEN PILE

INPUT: DE <- address of FCB
RETURN: A <- directory code

Opens a disk file for processing. Returns a

255 in A if the file could not be found.

16 CLOSE PILE

INPUT: DE <- address of FCB
RETURN: A <- directory code

Closes a disk file. Returns a 255 in A if the

file could not be found.

17 SEARCH POR PIRST

INPUT: DE <- address of FCB
RETURN: A <- directory code

Searches for the first file matching the name
given in the FCB. Returns a 255 in A if no
match was found.

CP/M ON THE COMMODORE 64 127



Table 6.6 (Continued)

FUNCTION DESCRIPTION
(Register C)

18 SEARCH FOR NEXT

INPUT: NONE
RETURN: A <- directory code

Similar to Function 17, but begins search

where 17 left off. Also returns a 255 in A if

no match was found.

19 DELETE PILE

INPUT: DE <- address of FCB
RETURN: A <- directory code

Deletes a disk file. Returns a 255 in A if the

file could not be found.

20 READ SEQUENTIAL

INPUT: DE <- address of FCB
RETURN: A <- directory code

Reads the next 128-byte record into the

memory pointed to by the current DMA ad-

dress. Returns a 00H in A if the read suc-

ceeded; non-zero if end-of-file was
encountered.

21 WRITE SEQUENTIAL

INPUT: DE <- address of FCB
RETURN: A <- directory code

128 CP/M ON THE COMMODORE 64



Table 6.6 (Continued)

FUNCTION DESCRIPTION
(Register C)

Writes the 12 8-byte record pointed to by the

current DMA address. Returns a 00H in A if

the write succeeded; a non-zero for a full

disk.

22 MAKE PILE

' INPUT: DE <- address of FCB
RETURN: A <- directory code

Creates the disk file named in the FCB. Re-

turns a 255 in A if the create failed.

23 RENAME FILE

INPUT: DE <- address of FCB
RETURN: A <- directory code

Renames a disk file. The name of the file is

in the first 16 bytes of the FCB, the new
name is in the next 16 bytes. Returns a 255
in A if the rename fails.

24 RETURN LOGIN VECTOR

INPUT: NONE
RETURN: HL <- login vector

Returns the disk login vector. The least sig-

nificant bit of L represents Disk A and the

next Drive B. When set to 1, the drive is on-

line.

CP/M ON THE COMMODORE 64 129



Table 6.6 (Continued)

FUNCTION DESCRIPTION
(Register C)

25 RETURN CURRENT DISK

INPUT: NONE
RETURN: A <- current disk number

Returns the number of the currently logged

disk (0=A and 1=B).

26 SET DMA ADDRESS

INPUT: DE <- DMA address

RETURN: NONE

Sets the address of the 128-byte disk sector

buffer.

27 GET ADDR (ALLOC)

INPUT: NONE
RETURN: HL <- ALLOC address

Returns the address of the allocation vector

of the current disk.

28 WRITE PROTECT DISK

INPUT: NONE
RETURN: NONE

Protects the current disk from being written

to.

130 CP/M ON THE COMMODORE 64



Table 6.6 (Continued)

FUNCTION DESCRIPTION
(Register C)

29 GET READ ONLY VECTOR

INPUT: NONE
RETURN: HL <- read only vector

Returns a vector indicating which drives are

temporarily write-protected. The least signif-

icant bit of L represents Disk A and the next

Drive B. When set to 1, the drive is write-

protected.

30 SET PILE ATTRIBUTES

INPUT: DE <- address of FCB
RETURN: A <- directory code

Sets read only and system file attributes.

31 GET ADDR (DISK PARMS)

INPUT: NONE
RETURN: HL <- address of DPB

Returns the address of the Disk Parameter

Block.

32 SET/GET USER CODE

INPUT: E <- user code (SET)

E <- OFFH (GET)
RETURN: A <- user code (GET)

CP/M ON THE COMMODORE 64 131



Table 6.6 (Continued)

FUNCTION DESCRIPTION
(Register C)

Returns or sets the current user code (user

number).

33 READ RANDOM

INPUT: DE <- address of FCB
RETURN: A <- return code

Performs a random record read on a disk

file. Return codes are:

01 reading unwritten data

03 cannot close current extent

04 seek to unwritten extent

06 seek past end of disk

34 WRITE RANDOM

INPUT: DE <- address of FCB
RETURN: A <- return code

Performs a random record write to a disk

file. Return codes are:

01 reading unwritten data

03 cannot close current extent

04 seek to unwritten extent

05 out of directory space

06 seek past end of disk

A

132 CP/wv ON THE COMMODORE 64



Table 6.6 (Continued)

FUNCTION DESCRIPTION
(Register C) '

35 COMPUTE PILE SIZE

INPUT: DE <- address of FCB
RETURN: file size

Returns the size of the file, in records, to the
random record field of the FCB.

36 SET RANDOM RECORD

INPUT: DE <- address of FCB
RETURN: NONE

Sets the random record number of a record
that was read sequentially. The random rec-

ord number is placed into the random record
field of the FCB.

37 RESET DRIVE

INPUT: DE <- drive vector

RETURN: NONE

Resets the disk drives indicated in the drive

vector. The least significant bit of L repre-

sents Disk A and the next Drive B. When set

to 1, the drive is reset.

38 NOT USED

39 NOT USED

CP/M ON THE COMMODORE 64 133



Table 6.6 (Continued)

FUNCTION DESCRIPTION
(Register C) ^

40 WRITE RANDOM WITH ZERO PILL

INPUT: DE <- address of FCB
RETURN: A «- return code

Identical to WRITE RANDOM (Function 34),

except that new blocks are zero-filled before

data is moved into them.

6.6 CALLING A Z80 PROGRAM
FROM THE 6510
You sometimes may want to call a Z80 routine from your

Commodore 64 while it is running in native mode. You

may, for example, want to take advantage of the Z80 regis-

ter structure or its extended instruction set, which make

some routines easier to write or more efficient to execute.

When you first switch on your Z80 processor, it will al-

ways begin execution at its reset address:

6510 ADDRESS $1000— Z80 ADDRESS $0000

To call a Z80 routine from the 6510, you must either:

• Load the routine at 6510 address *1000.

• Place a Z80jump instruction at 6510 address $1001

that transfers control to the actual code location.

In BOTH cases, 6510 address #1000 (Z80 $0000) must con-

tain a NOP instruction (*00). This is a requirement of the

processor switching hardware. Of course, if you place a

jump instruction at 6510 address $1001, you must load the

actual Z80 routine elsewhere in memory.

On subsequent calls to the Z80, routine execution will re-

sume at the instruction following the last instruction exe-

cuted before the Z80 switched itself off. It does NOT resume

execution at the reset address.

134 CP/M ON THE COMMODORE 64



6.6.1 Some Examples

Suppose you load some Z80 code at 6510 address $1000.
You can transfer control to that code by switching on the

Z80 processor:

LDA #0 ;LOAD ZERO INTO A

STA $DE00 ;STORE ZERO IN THE MODE SWITCH

LOCATION

NOP REQUIRED BY THE SWITCH

HARDWARE

The first time this code is executed, the Z80 will start

executing instructions at $0000 (6510 address $1000); that

address must contain a NOP instruction. Subsequent
executions of the code (without turning off your Commo-
dore 64) will cause the Z80 to resume execution where it left

off when it switched the 6510 back on.

Assume now that you have loaded your Z80 code at 6510
address *B000. This corresponds to a Z80 address of

$A000. You can get to this routine by using code similar to

the following:

;OPCODE FOR A NOP INSTRUCTION

;MEET THE SWITCHING

REQUIREMENT

,Z80 JUMP INSTRUCTION OPCODE

,-FIRST BYTE OF JUMP INSTRUCTION

;LOW BYTE OF Z80 JUMP ADDRESS

;NEXT BYTE OF JUMP INSTRUCTION

;HIGH BYTE OF Z80 ADDRESS

;LAST BYTE OF JUMP INSTRUCTION

;LOAD ZERO INTO A

,-STORE ZERO IN THE MODE

SWITCH LOCATION

/REQUIRED BY THE SWITCH

HARDWARE

LDA #$00

STA $1000

LDA #$C3

STA $1001

LDA #$00

STA $1002

LDA #$A0

STA $1003

LDA #0

STA $DE00

NOP

CP/M ON THE COMMODORE 64 135



Subsequent executions of this code (without turning off

your Commodore 64) will cause the Z80 to resume execu-

tion where it left off when it switched the 6510 back on. You

could thus use address $1000 for other purposes after

calling the Z80 routine the first time.

You can return from your Z80 routine by using the code

below:

MVI A,l ;LOAD ONE INTO A

STA 0CEO0H ;STORE ONE IN MODE SWITCH

LOCATION

;TO TURN ON THE 6510

NOP REQUIRED BY THE HARDWARE

AFTER A MODESW

;THE NEXT TIME IT IS SWITCHED ON, THE Z80 RESUMES

EXECUTION HERE

NOTE: You MUST follow the mode switching store instruction with a NOP

instruction.

6.7 CALLING A 6510 PROGRAM
FROM THE Z80

There may be times when you want the 6510, running in

Commodore 64 native mode, to perform some special tasks

for you.

For example, suppose you add the IEEE expansion car-

tridge to your Commodore 64 in order to attach an IEEE

standard instrument. Instruments require special control

commands that can be issued only by the 6510 main proc-

essor.

The 6510 portion of the BIOS (BIOS65) includes a facility

for calling your own code. This facility is implemented

through the BIOS function codes 7, 8, and 9.

136 CP/M ON THE COMMODORE 64



• BIOS function code 7 instructs BIOS65 to transfer

control to:

6510 ADDRESS $0E00— Z80 ADDRESS SFE00

• BIOS function code 8 instructs BIOS65 to transfer

control to:

6510 ADDRESS $0F0O— Z80 ADDRESS $FF00

• BIOS function code 9 instructs BIOS65 to transfer

control indirectly to the instruction whose address

is stored at:

6510 ADDRESS $0907— Z80 ADDRESS $F907

The code that you load at these locations MUST end with a

6510 RTS instruction. This instruction returns control to

BIOS65, which can then switch the Z80 processor back on.

As you see, function codes 7 and 8 always transfer control

to the same location. If you use both functions 7 and 8,

your programs cannot be larger than $100 bytes (256 dec-

imal). If you use only function code 7, you can expand your

program into the function code 8 space. This gives you a

maximum program size of *200 bytes (512 decimal).

If you need more space than you can get under function

codes 7 and 8, you can use function code 9. When you pass

function code 9 to BIOS65, it transfers control to the ad-

dress stored at 6510 location $0F07. This address can be

anywhere in the 6510 address space.

NOTE: When you use BIOS functiop 9, the indirect address you store at

Z80 address $FF07 (6510 address $0F07) MUST be a 6510 base address.

6.7.1 Switching on the 6510

If you are going to use a 6510 routine, you have to know

how to switch on the 6510 processor. The two processors

CP/M ON THE COMMODORE 64 137



cannot operate at the same time. When you switch one of
them on, the other is automatically switched off.

Processor switching is controlled by storing a mode
switch value in:

6510 ADDRESS $DE00— Z80 ADDRESS $CE00

The mode switch values are:

—» activates the Z80 processor

1 —» activates the 6510 processor

Suppose you load some 6510 code at 6510 address *0E00
that you wish to execute from a Z80 program. You can do
that using code like the following:

MVI A,7 ;LOAD THE FUNCTION CODE INTO A
STA OF900H ;STORE THE FUNCTION CODE IN

COMMAND REGISTER

; PREPARE ANY OTHER PARAMETERS
REQUIRED

BY THE CODE YOU HAVE

; PLACED AT 6510 ADDRESS $0E00— Z80

ADDRESS $FE00

MVI A,l ;LOAD ONE INTO A
STA 0CE00H ;STORE ONE IN MODE SWITCH

LOCATION

;TO TURN ON THE 6510

NOP REQUIRED BY THE HARDWARE
AFTER A MODESW

AFTER COMPLETION OF THE 6510

ROUTINE, Z80 RESUMES
EXECUTION HERE

From the example above, you can see that it's easy to call

a 6510 routine from the Z80. The 6510 routine that you
write does not have to switch control back to the Z80. The
BIOS65 program takes care of the return to the Z80.

138 CP/M ON THE COMMODORE 64



NOTE: You MUST follow the mode-switching store instruction with a NOP

instruction.

You must, of course, load your 6510 routine into the cor-

rect memory location before you transfer control to it. If you

use BIOS function 9, you must also load the 6510 address

of the code to be executed In indirect address location

$F907 (Z80).

6.8 PROGRAM EXECUTION
UNDER CP/M
Programs destined to execute under CP/M must be stored

in a disk file and have a file name extension of .COM (see

Chapter 5 for an explanation of CP/M file-naming con-

ventions and details on executing programs). User pro-

grams running under CP/M are loaded into the Transient

Program Area (TPA) for execution.

You execute a program under CP/M simply by entering its

name (without the extension). The general form is:

[DISKID-.]PROGRAM-FILENAME

where diskid is an optional disk identifier (A or B) and

program-Jllename is the name of the file that contains your

program. The program file MUST have the extension .COM.

Suppose, for example, that you have a program stored in

a file named STARTREK.COM. To execute that program,

you respond to the CP/M prompt (usually A» with:

STARTREK

CP/M will then load the file STARTREK.COM into the TPA

(Transient Program Area) and transfer control to it (at loca-

tion $100). When STARTREK completes its execution, it re-

turns to CP/M via a Z80 RET instruction or via a jump to

location $0000. The return via a jump to location $0000

causes a warm start reboot of CP/M.

CP/M ON THE COMMODORE 64 139



l4o





APPENDIX A

COMMODORE 64
MEMORY MAP

The following charts list which memory locations control placing char-

acters on the screen, and the locations used to change individual char-
acter colors, as well as showing character color codes.

SCREEN MEMORY MAP

COLUMN

20

1024-

1064

1104

1144

1184

1224

1264

1304

1344

1384

1424

1464

1504

1544

1584

1624

1664

1704

1744

1784

1824

1864

1904

1944

1984

1063

t

2023

142 APPENDIX A



The actual values to POKE into a color memory location to change a

character's color are:

BLACK

1 WHITE

2 RED

3 CYAN
4 PURPLE

5 GREEN

6 BLUE

7 YELLOW

8 ORANGE
9 BROWN
10 Light RED

11 GRAY 1

12 GRAY 2

13 Light GREEN

14 Light BLUE

15 GRAY 3

For example, to change the color of a character located at the upper

left-hand corner of the screen to red, type: POKE 55296,2.

COLOR MEMORY MAP

COLUMN

10 20 30 39

55335

330/D

55416

55456

55496

55536

55736

55776

SbUIb

56056
RfiflQfi

56256

10 o

t

56295

APPENDIX A 143



APPENDIX B

BIBLIOGRAPHY

This bibliography lists a variety of currently available CP/M
and Z80 books. Look at several books covering the topics

that interest you before you make your selection.

Each author covers the topics from a different viewpoint.

Find the book that you feel most comfortable with. Some
people prefer a more technical discussion and should select

a book with in-depth technical detail. Others like a less

technical approach and should seek a book that is easy to

understand.

You also can subscribe to a new magazine devoted exclu-

sively to CP/M:

The User's Guide to CP/M Systems and Software
Box 3050
Stanford, CA 94305

You may be interested in joining the CP/M User's Group,
which provides software written by members for their CP/M
systems. Software is often available for only a copying
charge. You can contact the CP/M User's Group through:

CP/M User's Group
c/o Lifeboat Associates

1651 Third Avenue
New York, NY 10028

B.l CP/M Books

This list gives some of the most recent CP/M books in

alphabetical order by title. It is by no means a list of all the

CP/M books available today. The prices shown are subject

to change.

CP/M Handbook With MP/M by Rodnay Zaks, SYBEX, pa-

per, $14.95

144 APPENDIX B



This is a reference guide to CP/M, written in a readable

style for beginners.

CP/M Primer by Stephen Murtha. Howard W. Sams, paper,

$14.95

This book helps both the first-time microcomputer

user and the experienced user who is just beginning to

use CP/M.

CP/M Word Processing by Chris DeVoney, Que Corporation,

paper, $16.50

This book covers the use of word processing packages

developed to run under the CP/M operating system. It

contains detailed evaluations of 17 popular CP/M word

processing packages and tells how to decide which

word processor best meets your needs.

How to Get Started with CP/M by Carl Townsend, Dilithium

Press, paper, $13.95

This book describes the CP/M operating system in an

easy, comfortable style. It eases the reader into under-

standing the details of this widely used microcomputer

operating system.

Osborne CP/M User Guide by Thorn Hogan, Osborne, pa-

per, $12.99

One of the most complete and up-to-date CP/M books

available. This book contains easy-to-understand de-

scriptions of the CP/M operating system and com-

mands. It also contains detailed technical information

for more experienced users.

Using CP/M by Judi Fernandez and Ruth Ashley, John
Wiley, paper, $12.95

This is a complete, detailed introduction to the use of

CP/M, written in an easy-to-understand style.

APPENDIX B 145



Vanloves CP/M Software Directory edited by Rolland Love

and Gerald Van Diver, Vital Information, paper, $24.95.

This up-to-date computer resource for CP/M describes

peripherals, software, and accessories for CP/M sys-

tems. It includes a bibliography and lists of user

groups, magazines, supplies, and computer acces-

sories.

B.2 Z80 Books

8080/Z80 Assembly Language by Alan Miller, John Wiley,

paper, $10.95

A step-by-step guide to programming the 8080 and
Z80 microprocessors. This book helps intermediate

and advanced programmers to get even more out of

their 8080/Z80.

Programming the Z80 by Rodnay Zaks, SYBEX, paper,

$15.95

This book covers the Z80 from basic concepts
through advanced programming techniques. Exercises

are offered to measure reader comprehension along the

way. The book's topics range from hardware organ-

izations to data structures.

Z80 and 8080 Assembly Language Programming by Kathe
Spracklen, Hayden Book Co., paper, $9.70

This book covers programming techniques and gives

complete instruction sets for the 8080 and Z80 mic-

roprocessors. Each chapter includes exercises and an-

swers to help readers learn to use the Z80 and 8080
more efficiently.

Z80 Microcomputer Design Projects by William Barden,

Howard W. Sams, paper, $13.95

146 APPENDIX B



This book gives a solid, in-depth look at the popular

Z80 microprocessor. It provides a complete look at the

internal architecture of the Z80.

Z80 Microcomputer Handbook by William Barden, Howard
W. Sams, paper, * 11.95

This book is designed to teach you about the Z80.

There is extensive coverage of Z80 machine language

and the Z80 assembler language.

Z80 Microcomputer Programming and Interfacing, Books 1

and 2 by Elizabeth Nichols, Howard W. Sams, paper, Book
1-*12.95, Book 2-*12.95, Book 1 & 2-*24.95

Book 1 introduces computers to readers who have

no background in computer science. Book 2 assumes a

familiarity with Book 1 and continues an in-depth dis-

cussion of the design and use of the popular Z80 mi-

croprocessor. Both volumes are written in a self-

teaching format with exercises and answers.

Z80 User's Manual by Joseph Carr, Prentice-Hall, paper,

$15.95

An all-in-one guide to the Z80. This book is useful

for both beginning and advanced Z80 users. It in-

cludes in-depth technical details for the Z80.

APPENDIX B 147



APPENDIX C

CP/M COMMAND
LIST

This appendix is a simple listing of CP/M commands. For

details on these commands, see Chapter 5.

Load and execute a program:
[disk-id .filename <CR>

Change the currently logged disk:

disk-id:

Assemble a Z80 assembler program:

ASMJilename[.parms]

ASM error codes are given in Table 5.4.

Run the CP/M debugger:

DDT [ [disk-id:filename[.type] ]

DDT commands are given in Table 5.5.

Get a directory listing:

DIR [disk-td:][filename.type]

Dump a file in ASCII and hexadecimal format:

DUMP [disk-id:]filename.type

148 APPENDIX C



Edit a file:

ED [disk-id :]filename[.type] [[disk-id2 :]

\filename2[.type2]]]

ED control characters are given in Table 5.8.

ED commands are given in Table 5.9.

Erase a file:

ERA [disk-id:]filename.type

Create an executable module from ASM output:

LOAD [disk-id -.filename

Copy a new version of CP/M:
MOVCP [ { *

|
size }][* ]

Copy a file or disk:

PIP destination =source[ command-parameters]

Table 5.10 gives PIP logical devices.

Table 5. 1 1 gives special PIP devices.

Table 5.12 gives PIP command parameters.

Rename a file:

REN [disk-id: ]new-file= old-file

Save page-num 256-byte pages of memory beginning at the

start of the TPA (100 hexadecimal):

SAVE page-num [disk-id: yilename[. type]

APPENDIX C 149



Get disk and I/O device status information:

STAT command

Table 5.13 shows STAT command options.

Table 5. 14 shows STAT command attributes.

Submit a file for batch execution:

SUBMIT [disk-id -.Jfilename [parameters]

Generate a new CP/M system:

SYSGEN [ [disk-Id:]Jilename.type]

Print a file to the screen:

TYPE [disk-id: filename.type

Change the user number:
USER [user-num]

Include keyboard data in your SUBMIT file:

XSUB

150 APPENDIX C



APPENDIX D

ASCII, CHR*,
AND HEXADECIMAL
CHARACTER CODES
When running In native mode your Commodore 64 uses

two sets of character codes

:

• CHR* Codes (see Appendix F of your Commodore 64
User's Guide).

• Screen Display Codes (see Appendix E of your
Commodore 64 User's Guide).

CP/M employs another character code set called the ASCII
Character Codes (shown In Table D. 1 below).

NOTE: The CTRL-Shifted column of Table D.l shows the values generated

when you hold the BSHB key down and press the character key.

When you use the CONFIG utility to alter character code

values, you must supply the ASCII hexadecimal value of

the new character. Therefore, the character code values

shown In Table D. 1 are expressed In hexadecimal.

If you're not sure what a hexadecimal value Is. don't

worry. Look up the character In Table D. 1 and use the value

shown (including the letters).

Table D.l ASCII Character Codes (Hexadecimal Values)

CHARACTER HEX VALUE CTRL SHIFTED
M-MMLU.Vm 03 03

EEffiB^sl 08 is

OD OD
IB 7F

1C/1D ID
IE/IF IF
20 20

APPENDIX D 151

CLR7HOME
LEFT/RIGHT

UP/DOWN



Table D.l (Continued)

CHARACTER HEX VALUE CTRL SHIFTED

Dfl 21 21

22 22B 23 23

24 24a 25 25

Di 26 26
27 27B 28 28a 29 29m 2A 2Am 2B 2B

Bl 2C 7Bm 2D 2D

BH 2E 7D
w^^ 2F 5CD 30 00

31 31a 32 32

Dfl 33 33

El 34 34O 35 35

El 36 36a 37 37a 38 7B
39 7Dn 3A 7B

wm 3B 7D

i^i 40 60— 41 01

D 42 02a 43 03

^E^l 44 04

El 45 05a 46 06a 47 07a 48 08n 49 09n 4A 0A

152 APPENDIX D



Table D.l (Continued)

CHARACTER HEX VALUE CTRL SHIFTED

El 4B OBn 4C OC

o 4D 0DB 4E OE

BEBB 4F OF

B 50 10

a 51 11

52 12s 53 13n 54 14a 55 15B 56 16B 57 17a 58 18

D 59 19

5A 1AB 5C 7C
5E 7Es 5F 5FB 61 01

El 62 02a 63 03B 64 04B 65 05B 66 06B 67 07B 68 08B 69 09B 6A OAB 6B OBB 6C OCB 6D ODB 6E OE

El 6F OFB 70 10B 71 11B 72 12B 73 13

APPENDIX D 153



Table D.l (Continued)

CHARACTER HEX VALUE CTRL

74 14

75 15

76 16

77 17

78 18

79 19

7A 1A

80 81

81 81

82 83

83 83

84 85

85 85

86 87

87 87

154 APPENDIX D



APPENDIX E

BIOS AND
LISTINGS

BOOT

This appendix gives the source listings for the BIOS and
BOOT programs on the 6510 and the Z80.

Xerox to Commodore 64 Receive Utility

COPYRIGHT © 1982

COMMODORE INTERNATIONAL

0100 = TPA EQU 100H ;START ADDRESS OF PROGRAM

005C = FCB EQU 005CH ,-FILE CONTROL BLOCK

0080 = DMADDR EQU 0080H ;DMA ADDRESS

0O0D = CR EQU 0DH CARRIAGE RETURN

0006 = ACK EQU 06H

0015 = NAK EQU 15H

0000 = BOOT EQU 0000H

0005 = BDOS EQU 0O05H

OEOO = SIO EQU OEOOH

FFO0 = MEM EQU 0FF00H jBUFFER MEMORY

0300 = PGM65 EQU 0300H

0080 = 9ZE65 EQU 128

0100

0100 31D802

0103 113B02

0106 3A5DO0

ORG

SYNTAX FOR COMMAND IS

RECEIVE FlLENAME.EXT

TPA

LXI SP,STACK ,SET UP LOCAL STACK

CHECK FOR VALID FILENAME

LXI D,NONAME ,NONAME MESSAGE

LDA FCB+1

APPENDIX E 1 SS



0109 FE20 CPI ' '

01 OB CAE201 JZ DONE ; IF SPACE, NO NAME GIVEN

01 OE 115802 LXI D.BADNAM ;CHECK FOR AMBIGUOUS NAME

0111 215C00 1X1 H,FCB

0114 3E3F MVI A,T

0116 0610 MVI B,16 ;COUNTER

0118 BE QLOOP: CMP M ,IS IT V

0H9 CAE201 JZ DONE ,-IF SO, BAD NAME

OTIC 23 INX H

OUD 05 DCR B

01 IE C21801 JNZ QLOOP ;DO 16 TIMES

0121 118000 LXI D.DMADDR

0124 CD 1702 CALL SETDMA

TRANSFER 6510 CODE TO $E00 (OFEOOH)

0127 0680

0129 210003

01 2C 1100FE

01 2F 78

0130 A7

0131 CA3C01

0134 7E

0135 12

0136 23

0137 13

0138 05

0139 C23401

01 3C 115C00

013F CD1D02

0142 115C00

0145 CD2302

LOADLP

SKIP:

MVI B.SIZE65

LXI H,PGM65

LXI D,OFE00H

MOV A,B

ANA A

JZ SKIP

MOV A,M

STAX D

INX H

INX D

DCR B

JNZ LOADLP

GET READY BY OPENING FILES

LXI D.FCB

CALL DELETE

LXI D.FCB

CALL MAKE

156 APPENDIX E



0148 117602 LXI D,NODIR

01 4B 3C INR A

014C CAE201 JZ DONE

014F 118000 LXI D,DMADDR

0152 CD1702 CALL SETDMA

0155 AF REaDS: XRA A

0156 32B702 STA POINT

;WAS 255 IF NO FILE SPACE

0159 3E06 GNEXT: MVI A.ACK ;SEND INITIAL ACK

01 5B 32FFFE GBIK. STA OFEFFM ,1/0 LOCATION

01 5E 3E07 MVI - A,7

0160 3200F9 STA 0F900H

0163 3E01 MVI A,l

0165 3200CE STA OCEOOM

0168 00 NOP

0169 3AFFFE

01 6C A7

01 6D C2C401

NEED TEST FOR ERROR

LDA OFEFFH

ANA A

JNZ AGAIN

0170 118000

0173 3AB702

0176 B3

0177 5F

0178 2100FF

01 7B 7E

01 7C FE3A

01 7E C2C401

0181 AF

0182 32B602

0185 CDE801

0188 A7

0189 CAD901

LXI D,DMADDR

LDA POINT

ORA E

MOV E,A

LXI M,MEM

MOV A,M

CPI
'.'

JNZ AGAIN

XRA A

STA BADDAT

CALL GYBTE

ANA A

JZ FINISH

APPENDIX E 157



01 8C FE20

01 8E C2C401

CPI

JNZ

32

AGAIN

0191 0E00 GETQ: MVl C,0 CHECKSUM

0193 47 MOV B,Z ,-COUNTER

0194 C5 GQLP= PUSH B

0195 CDE801 CALL GBYTE

0198 12 STAX D

0199 1C INR E

01 9A CI POP B

01 9B 81 ADD C

01 9C 4F MOV C,A

01 9D 05 DCR B

01 9E C29401 JNZ GQLP

01A1 C5 PUSH B

01A2 CDE01 CALL CBYTE

01A5 CI POP B

01A6 81 ADD C

01 A7 C2C401 JNZ AGAIN

01AA 3AB602 LDA BADDAT

01 AD B7 ORA A

01 AE C2C401 JNZ AGAIN

01 Bl 3AB702 IDA POINT

01 B4 C620 ADI 32

01 B6 32B702 STA POINT

01 B9 FE80 CPI 128

01 BB C25901 JNZ GNEXT

01 BE CDC901 CALL SWRITE

01 CI C35501 JMP READS

01C4 3E15 AGAIN: MVl A,NAK

01 C6 C35801 JMP GBLK

158 APPENDIX E



01 C9 115C00

01 CC CD2902

01 CF 119502

01 D2 B7

01 D3 C2E201

01 D6 C9

01 D7 00

01 D8 00

01 D9 115C00

01 DC CD2F02

01 DF 11A102

01 E2 CD3502

01 E5 C30000

SWRITE:

FINISH:

DONE.

LXI D,FCB

CALL WRITE

LXI D,DFULL

ORA A

JNZ DONE

RET

NOP

NOP

LXI D,FCB

CALL CLOSE

LXI D,EOTRAN

CALL PRINT

JMP BOOT

01 E8 CDF501 GBYTE: CALL GNIB

01EB 87 ADD A

01 EC 87 ADD A

01 ED 87 ADD A

01 EE 87 ADD A

01 EF 47 MOV B,A

01 FO CDF501 CALL GNIB

01 F3 80 ADD B

01 F4 C9 RET

01 F5 23 GNIB: INX H

01 F6 7E MOV A,M

01 F7 FE30 CPl a

01 F9 DAI 102 JC NOTHEX

01 FC FE3A CPl '9'+l

01 FE DA0E02 JC NUMBER

0201 FE41 CPl 'A

0203 DAI 102 JC NOTHEX

0206 FE47 CPl 'F'+l

0208 D21102 JNC NOTHEX

020B D637 ALPHA: SUI 'A- 10

APPENDIX E 159



020D C9 RET

020E D630 NUMBER: SUI 0'

0210 C9 RET

0211 3EFF NOTHEX.- MV1 A,0FFH

0213 32B602 STA BADDAT

0216 C9 RET

0217 0E1A SETDMA: MVI C,26

0219 CD0500 CALL BDOS

021C C9 RET

021 D 0E13 DELETE: MVI C,19

021F CD0500 CALL BDOS

0222 C9 RET

0223 0E16 MAKE. MVI C,22

0225 CD0500 CALL BDOS

0228 C9 RET

0229 0E15 WRITE: MVI C,21

022B CD0500 CALL BDOS

022E C9 RET

022F 0E10 CLOSE- MVI C,16

0231 CD0500 CALL BDOS

0234 C9 RET

0235 0E09 PRINT- MVI C,9

0237 CD0500 CALL BDOS

023A C9 RET

023B 46494C454E NONAME: DB

0258 414D424947 BADNAM: DB

'FILENAME MUST BE SPECIFIED',0DH,0DH,'$'

'AMBIGUOUS FILES NOT

ALLOWED',0DH,0DH,'$'

160 APPENDIX E



0276 4E4F204449 NODIR: DB

0292 0D0D24 DB

'NO DIRECTORY SPACE AVAILABLE'

0DH,0DH,'$'

0295 4449534B20 DFULL: DB 'DISK FULL'

029E 0D0D24 DB 0DH,0DH,'$'

02A1 545241 4E53 EOTRAN- DB TRANSFER COMPLETE.',ODH,ODH,'$'

02B6

02B7

BADDAT: DS

POINT- DS

02B8

02DB

DS

STACK EQU

32

$

Commodore 64 Copy Utility 1.0

COPYRIGHT © 1982
COMMODORE INTERNATIONAL

0100

F800 =

F900 =

F901 =

F902 =

F903 =

F904 =

0001 =

CEOO =

0000 =

0001 =

0006 =

0005 =

0000 =

000D =

000A =

ORG 1O0H

EQUATES

BUFFER EQU 0F8O0H

CMD EQU OF900H

DATA EQU 0F901H

SECTOR EQU 0F902H

TRACK EQU 0F903H

DISKNO EQU 0F904H

OFF EQU 1

MODESW EQU 0CEO0H

VICRD EQU

VICWR EQU 1

VICFMT EQU 6

BDOS EQU 0005H

BOOT EQU OOOOH

CR EQU ODH ,-CARRIAGE RETURN

LF EQU OAH ,LINE FEED

APPENDIX E 161



oooc = CLS EQU OCH ;CLEAR SCREEN

OlOO 316B06 START: 1X1 SP,STACK

0103 111403 LXI D,COPMSG

0106 CD0503 ; CALL PRINT ;PROGRAM NAME, ETC.

0109 CD0003 IN1T04: CALL . CONIN

010C FE31 CPI T
010E CA2301 JZ FORMAT

0111 FE32 CPI r
0113 CAD701 JZ BACKUP

0116 FE33 CPI '3'

0118 CA7B01 JZ SYSTEM

01 IB FE34 CPI '4'

01 ID CAOOOO JZ BOOT

0120 C30901 JMP IN1T04

0123 11A603 FORMAT LXI D,FMTMSG ;FORmAT A DISK

0126 CD0503 CALL PRINT

0129 CDDB02 CALL CRORRS ;GET KEYBOARD INPUT

01 2C CA0001 JZ START jIF RUN/STOP, GO TO MENU

012F 116104 LXI D,FMTING jFORMATNNG MESSAGE

0132 CD0503 CALL PRINT

0135 3E06 MVI A,VICFMT

0137 CD0A03
•

CALL IO6510 ;SEND FORMAT COMMAND TO

6510

01 3A 3A01F9 LOA DATA ,CHECK FOR ERROR

013D A7 ANA A

013E C27501 JNZ FMTERR

0141 2100F8 LXI H.BUFFER ;FILL DISK BUFFER WITH E5's

0144 3EE MVI A,0E5H ; FOR DIRECTORY SECTORS

0146 77 FMTO: MOV M,A

162 APPENDIX E



0147 2C

0148 C24601

014B 3E03

014D 3203F9

0150 3E00

0152 3204F9

0155 3EO0

0157 3202F9

01 5A 3E01

01 5C CD0A03

01 5F 3A01F9

0162 A7

0163 C27501

0166 3A02F9

0169 3C

01 6A FE08

01 6C C25701

01 6F 118704

0172 C37502

0175 119A04

0178 C37502

FMT1:

FMTERR:

INR L

JNZ FMTO ;DO THIS 256 TIMES

MVI A,3

STA TRACK DIRECTORY TRACK

MVI A,0

STA DISKNO ;FORCE DRIVE

MVI A,0 INITIAL SECTOR

STA SECTOR ;SET SECTOR

MVI A,VICWR ,GET READY FOR WRITE

CALL IO6510 ;GO DO IT

LOA DATA ,A = 0IFOK

ANA A

JNZ FMTERR

LOA SECTOR

INR A

CPI 8 ;DO ONLY SECTORS 0-7

JNZ FMT1 ,LOOP UNTIL DONE

LXI D.FMTDON

JMP DONE

LXI D,FMTERM

JMP DONE

01 7B 11D304 SYSTEM: LXI D,SYSMSG ;SYSTEM TRACKS ONLY

017E CD0503 CALL PRINT

0181 112905

0184 CD0503

0187 116905

01 8A CD0503

01 8D CDDB02

$190 CA0001

LXI D,SRCMSG

CALL PRINT

LXI D.PRSMSG

CALL PRINT

CALL CRORRS

JZ START ,IF SPACEBAR, GO TO MENU

0193 CDEA02 CALL CRLF

APPENDIX E 163



0196 216B06 1X1 H,MEM iBEGINNING OF MEMORY SPACE

0199 3E01

01 9B CD8402

01 9E 3E02

01 A0 CD8402

01A3 3E12

01A5 CD8402

MVI A,l

CALL ROTRK ,READ TRACK 1

MVI A,2

CALL RDTRK ,READ TRACK 2

MVI A,18

CALL RDTRK jREAD TRACK 18

01A8 114905

01 AB CDO503

LXI D,DSTMSG ;PRINT DESTINATION MESSAGE

CALL PRINT

01AE 110F06

01 Bl CD0503

LXI D,RTNMSG

CALL PRINT

01 B4 CD0003

01 B7 FE0D

01 B9 C2B401

SYS1- CALL CONIN

CPI CR

JNZ SYS1

,WAIT FOR CARRIAGE RETURN

01 BC CDEA02

01 BF 216B06

CALL CRLF

LXI H,MEM iSETUP FOR WRITE ***

01 C2 3E01

01C4 CDAE02

MVI A, 1

CALL WRTRK

01 C7 3E02

01 C9 CDAE02

MVI

CALL

A, 2

WRTRK

01CC 3E12

01 CE CDAE02

MVI

CALL

A,18

WRTRK

01 Dl 118E05

01 D4 C37502

LXI

JMP

D.SYSDON

DONE

01 D7 11AC05

01 DA CD0503

BACKUP: LXI

CALL

D.BAKMSG .BACKUP DISK

PRINT

164 APPENDIX E



01 DD 116905

01 E0 CD0503

01 E3 CDDB02

01 E6 CA0001

01 E9 CDEA02

01 EC 3E01

01EE 3203F9

01F1 3E05

01 F3 324A06

01 F6 3A03F9

01 F9 324806

01 FC 3E07

01 FE 324906

0201 112905

0204 CD0503

0207 110F06

020A CD0503

020D CD0003

0210 FEOD

0212 C20D02

0215 216B06

0218 3A03F9

021

B

CD8402

021

E

3A03F9

0221 3C

0222 3203F9

0225 3A4906

0228 3D

0229 324906

022C C21802

022F 3A4806

BKLP:

BKRD1-

BKRO:

1X1 D.PRSMSG

CALL PRINT

CALL CRORRS

JZ START

CALL CRLF

MVI A,l

STA TRACK

MVI A,5

STA OUTER

LDA TRACK

STA WTRACK

MVI A. 7

STA INNER

LXI D,SRCMSG

CALL PRINT

LXI D,RTNMSG

CALL PRINT

CALL CONIN

CPI CR

JNZ BKRD1

LXI M,MEM

LDA TRACK

CALL RDTRK

LDA TRACK

INR A

STA TRACK

LDA INNER

DCR A

STA INNER

JNZ BKRD

LDA WTRACK

,START WITH TRACK 1

;DO OUTER LOOP 5 TIMES

,INNER LOOP COUNTER

;START OF AVAILABLE MEMORY

APPENDIX E 165



0232 3203F9

0235 3E07

0237 324906

023A 114905

023D CD0503

0240 110F06

0243 CD0503

0246 CD0003

0249 FEOD

024B C24602

024E 216B06

0251 3A03F9

0254 CDAE02

0257 3A03F9

025A 3C

025B 3203F9

025E 3A4906

0261 3D

0262 324906

0265 C25102

0268 214A06

026B 35

026C C2F601

BKWR1:

BKWR:

STA TRACK RESTORE TRACK 1

MVI A, 7

STA INNER ilNNER COUNTER

1X1 D.DSTMSG

CALL PRINT

LXI D,RTNMSG

CALL PRINT

CALL CONIN

CPI ODH

JNZ BKWR1

LXI H,MEM

LOA TRACK

CALL WRTRK

LOA TRACK

INR A

STA TRACK

LOA INNER

DCR A

STA INNER

JNZ BKWR

LXI H.OUTER

DCR M
JNZ BKLP

;START OF MEMORY AGAIN

026F UFC05 LXI D,BAKDON

0272 C37502 JMP DONE

0275 CD0503 DONE. CALL PRINT

0278 11B804 LXI D,ANYKEY

027B CD0503 CALL PRINT

027E CD0003 Call CONIN

0281 C30001 JMP START

0284 3203F9 RDTRK: STA TACK

.PRINT DONE MESSAGE

,WAIT FOR ANY KEY

,A = TRACK ON ENTRY

166 APPENDIX E



0287 3E00 MVI A,0 ;START WITH SECTOR

0289 3202F9

028C 3EO0

028E CD0A03

0291 3A01F9

0294 A7

0295 C2FA02

0298 1100F8

029B 1A

029C 77

029D 13

029E 23

029F 7B

02A0 A7

02A1 C29B02

02A4 3A02F9

02A7 3C

02A8 FEU

02AA C28902

RD1:

RD2:

STA SECTOR

MVI A,VICRD ;READ SECTOR COMMAND

CALL IO6510 ;GO DO IT

LDA DATA

ANA A

JNZ RDERR ,READ ERROR IF <>0

LXI D,BUFFER

LDAX D ,GET CHARACTER FROM BUFFER

MOV M,A ; AND PUT IN MEMORY

INX D

INX H :BUMP POINTERS

MOV A,E ,-DONE 256 YET?

ANA A

JNZ R02 ;JUMP IF NO

LOA • SECTOR

INR A

CPI 17 ,17= LAST SECTOR +1

JNZ R01

02AD C9 RET

02AE 3203F9 WRTRK: STA TRACK ;A= TRACK ON ENTRY

02B1 3E00 MVI A,0

02B3 3202F9

02B6 1100F8

02B9 7E

02BA 12

02BB 23

02BC 13

028D 7B

02BE A7

02BF C2B902

WR1:

WR2:

STA SECTOR

LXI D,BUFFER

MOV A,M

STAX D

INX H

INX D

MOV A,E

ANA A

JNZ WR2

,PUT CHAR IN BUFFER

.INCREMENT POINTERS

,DONE 256 YET?

JUMP IF NO

02C2 3E01

02C4 CD0A03

MVI A,VICWR ,SECTOR WRITE COMMAND
CALL IO6510 ,GODOIT

APPENDIX E 167



02C7 3A01F9 LDA DATA

02CA A7 ANA A

02CB C2F402 JNZ WRERR ,JUMP IF WRITE ERROR

02CE 3A02F9 LDA SECTOR

02D1 3C INR A

02D2 FEU CPI 17 ; 17= LAST SECTOR +1

02D4 C2B302 JNZ WR1 ;KEEP READING

02D7 C9 RET

02D8 FE20 CR1. CPI 20H ;SPACEBAR?

02DA C8 RZ

02DB CD0003 CRORRS- CALL CONIN

02DE FEOO CPI CR .CARRIAGE RETURN

02E0 C2OB02 JNZ CR1

02E3 A7 ANA A ,KlLL ZERO FLAG

02E4 C9 RET

02E5 OE02 CONOUT:: MVI C,2

02E7 C30500 JMP BDOS

02EA 1EOO CRLF: MVI E.CR

02EC CDE502 CALL CONOUT

02EF 1EOA MVI E,LF

02F1 C3E502 JMP CONOUT

02F4 111D06 WRERR: LXI D,WRMSG

02F7 C37502 JMP DONE
•

02FA 113306 ROERR: LXI D,RDMSG

02FD C37502 JMP DONE

0300 0E01 CONIN: MVI C,l

0302 C30500 JMP BDOS

0305 0E09 PRINT: MVI C,9

0307 C30500 JMP BDOS

030A 3200F9 IO6510: STA CMD ,PUT A IN 6510 COMMAND

REGISTER

168 APPENDIX E



030D 3E01 MVI A,OFF

030F 3200CE STA MODESW ;
TURN OFF Z80

0312 00 NOP

0313 C9 RET

TEXT AND MESSAGES:

0314 0C0A434F4D COPMSG- DB

0333 0D0A0A DB

0336 202031 2E20 DB

0349 2020322E20 DB

035C 2020332E20 DB

037B 2020342E20 DB

0388 504C454153 DB

CLS,LF,'COMMODORE 04 UTILITY 1
0'

CR,LF,LF

1. FORMAT DISK',CR,LF

' 2. BACKUP DISK',CR,LF

' 3. COPY SYSTEM TRACKS ONLY',CR,LF

'4. EXIT',CR,LF,LF

'PLEASE CHOOSE FUNCTION (1-4) $'

03A6 0C0A464F52 FMTMSG: DB

03BE 494E495449 DB

03D9 0A43415554 DB

03FD 504C4 14345

041

C

4452495645

0436 2020202O4F

043F 5052455353

DB

DB

DB

DB

CLS,LF,'FORMAT DISK UTILITY',CR,LF,LF

'INITIALIZES DISK FOR CP/M',CR,LF

LF/CAUTIONi FORMAT ERASES ALL

DATA',CR,LF,LF

'PLACE DISK TO BE FORMATTED IN',CR,LF

'DRIVE AND PRESS ENTER\CR,LF,LF

' OR'.CR.LF.LF

'PRESS SPACEBAR TO RETURN TO MENU $'

0461 0DOA0A464F FMTING: DB

0483 0D0A0A24 DB

CR,LF,LF,'FORMATTING DISK, PLEASE WAIT. .

.'

CR,LF,LF,'$'

0487 464F524D41 FMTDON: DB 'FORMAT COMPLETE',CR,LF,LF,'$'

049A 49204341 4E FMTERM: DB 'I CANNOT FORMAT THIS DISK!',CR,LF,LF,'$'

04B8 5052455353 ANYKEY: DB 'PRESS ANY KEY TO CONTINUE $'

04D3 0C0A535953 SYSMSG- DB

04F1 434F504945 DB

0518 544F20534C DB

CLS,LF,'SYSTEM TRACK COPY UTILITY',CR,LF,LF

'COPIES SYSTEM TRACKS FROM MASTER

DISK',CR,LF

'TO SLAVE DISK',CR,LF,LF,'$'

0529 494E534552 SRCMSG: DB

0549 494E534552 DSTMSG: DB

'INSERT MASTER DISK IN DRIVE CCR^F.'S'

'INSERT SLAVE DISK IN DRIVE 0',CR,LF,'$'

APPENDIX E 169



0569 5052455353 PRSMSG- DB 'PRESS RETURN (OR SPACEBAR FOR MENU) $'

058E 5359535445 SYSDON: DB 'SYSTEM TRACK COPY COMPLETE',CR,LF,LF/$

05AC 0C0A444953 BAKMSG: DB

05C4 5448452045 DB

05E0 434F504945 DB

05FB 24 DB

05FC 4241434B55 BAKDON: DB

060F 5052455353 RTNMSG: DB

061D 0D0A0A4449 WRMSG: DB

0633 0D0A0A4449 RDMSG : DB

CLS.LF-'DISK BACKUP UTILITY', CR,LF,LF

'THE ENTIRE MASTER DISK IS ',CR,LF

'COPIED TO THE SLAVE DISK',CR,LF,LF

'$'

'BACKUP COMPLETE',CR,LF,LF,'$'

'PRESS RETURN $'

CR,LF,LF,'DISK WRITE ERROR', CR,LF,'$'

CR,LF,LF,'DISK READ ERROR',CR,LF,'$'

0648 WTRACK DS 1

0649 INNER DS 1

064A OUTER DS 1

064B DS 32

066B = STACK QU J

066B = MEM EQU $

Z80 Bootstrap Routine
for the Commodore 64

COPYRIGHT © 1982
COMMODORE INTERNATIONAL

This routine is loaded from Track 1, Sector 5 of the

Commodore 64 CP/M disk by a routine in BIOS65.
The load address is 0000H (with respect to the Z80 CPU).

When the Z80 is enabled this program loads the Z80 BIOS
and CCP and BDOS into RAM and jumps to it.

3400 =

001C

CCP EQU

;CCP EQU

=CCP EQU

NSECTS EQU

3400M

OOOOH

0100H

1CH

;FOR MAKING BOOTO.HEX

;FOR MAKING BOOT1. HEX

170 APPENDIX E



F903 = TRACK EQU 0F903H

F902 = SECTOR EQU 0F902H

F904 = DISKNO EQU 0F904H

FCFF = IOTYPE EQU 0FCFFH ,IO SETUP BYTE IN 8IC

4A33 = KYBDMD EQU CCP + 1 633H ;CAPS LOCK FLAG

0000 = VICRD EQU

F9O0 = CMD EQU 0F900H

0001 = OFF EQU 01

H

CE00 = MODESW EQU 0CE00H

F901 = DATA EQU 0F901H

F800 = BUFFER EQU 0FB00H

4A00 = 800T EQU CCP+1600H

0000

0000 00

0001 110034

0004 3E00

0006 3204F9

0009 2601

000B 2E06

OOOD 7C

OOOE 3203F9

001

1

7D

0012 3202F9

0015 3E00

0017 3200F9

001 A 3E01

001 C 3200CE

001F 00

0020 3A01F9

0023 B7

0024 C20DOO

LOAD1

ORG

NOP

LXI

MVI

STA

MVI

MVI

MOV

STA

MOV

STA

MVI

STA

MVI

STA

NOP

LDA

ORA

JNZ

0000H

D,CCP

A,0

DISKNO

H,l

L,6

A,H

TRACK

A.L

SECTOR

A,VICRD

CMD

A,OFF

MODESW

DATA

A

LOAD1

,Z80 RESET LOCATION

;NOP REQUIRED FOR HARDWARE

;START OF LOAD ADDRESS

;LOAD IN FROM DRIVE A

;READ BEGINNING TRK 1, SEC 6

:SECTOR READ COMMAND

;TURN OFF SELF

;WAS TRANSFER OK?

;JUMP IF NO

OUTPUT '*' TO SHOW LOADING

0027 3E2A

0029 3201 F9

002C 3E03

002E 3200F9

0031 3E01

MVI A,'*'

STA DATA

MVI A,3

STA CMD

MVI A,OFF

APPENDIX E 171



0033 3200CE STA MODESW

0036 00 NOP

MOVE SECTOR TO h

0037 0100F8 LXI B,BUFFER

003A 0A LOAD2-. LDAX B

003B 12 STAX D

003C OC INR C

003D 1C INR E

003E C23A00 JNZ LOAD2

UPDATE POINTERS

CP/M Version 2.2 System
Relocator— 2/80

CP/M Relocator Program, Included with the Module To
Perform the Move from OOOH to the Destination
Address

COPYRIGHT © 1980
DIGITAL RESEARCH

Modified for Use on the Commodore 64

MODIFICATIONS COPYRIGHT © 1982
COMMODORE INTERNATIONAL

004]

0042 2C

0043 7D

INR D

INR L

MOV A,L

CHECK FOR END- OF TRACK

0044 FEI1 CPI 17

0046 DA4C00 JC LOAD3

0049 24 INR H

004A 2EO0 MVI L,0

172 APPENDIX E



01 IE C21801 JNZ QLOOP ;DO 16 TIMES

0121 118000 LXI D,DMADDR

0124 CD0D02 CALL SETDMA

0127 3E07 MVI A,07H ;1200 BAUD DATA

0129 D300 OUT

012B 3E18 MVI A,18H

01 2D D306 OUT 6

01 2F 210001 LXI H,0100H

0132 CD0602 CALL SETUP

0135 21 CI 03 LXI H.03CLH

0138 CD0602 CALL SETUP

01 3B 214404 LXI H,0444H

01 3E CD0602 CALL SETUP

0141 216805 LXI H,0568H

0144 CD0602 CALL SETUP

0147 115C00 LXI D,FCB

01 4A CD1302 CALL OPEN

014D 116002 LXI D,NOFILE

0150 3C INR A ;WAS 255 IF NO FILE

0151 CAA201 JZ LX)NE

0154 CDFC01 WTACK: CALL SIN ,WAIT FOR INITIAL AC

0157 FE06 CPI ACK

0159 C25401 JNZ WTACK

015C 3E00 RDNEXT: MVI A,0

01 5E 328F02 STA POINT ,QUARTER SECTOR PC

0161 II5C00 LXI D,FCB

0164 CD1902 CALL READ

0167 B7 ORA A

0168 C28B01 JNZ EOF

0168 CDA801 AGAIN- CALL SEND ;SEND 32 8YTES

01 6E CDFC01 WTANS: CALL SIN

0171 FE15 CPI NAK

APPENDIX E 185



0173 CA6801 JZ AGAIN ,BAD CHECKSUM, SEND AGAIN

0176 FE06

0178 C26E0I

0178 3A8F02

01 7E C620

0180 328F02

0183 FE80

0185 CA5C01

CPI ACK

JNZ WTANS

LDA POINT

ADI 32

STA POINT

CPI 128

JZ RDNEXT

;IF NOT ACK, KEEP WAITING

;POINT TO QUARTER

;IF 0, READ ANOTHER SECTOR

0188 C36B01

0188 3E3A

01 8D CDF001

0190 3E30

0192 CDF001

0195 3E30

0197 CDF001

019A 3E0D

019C CDF001

01 9F I17A02

JMP AGAIN

EOF: MVI A,':'

CALL SOUT

MVI A,'0'

CALL SOUT

MVI A,'0'

CALL SOUT

MVI A.CR

CALL SOUT

LXI D,EOTRAN

,SEND NEXT QUARTER

•OUTPUT START OF STRING

01A2 CDIF02

01 A5 C30000

DONE- CALL PRINT

JMP BOOT

01 A8 3E3A

01AA CDF001

01 AD 3E20

01AF CDD901

SEND: MVI

CALL

A,'.'

SOUT

MVI A,32

CALL SHOUT •NUMBER OF DATA 8YTES

01 B2 0E00

01B4 218000

01 B7 3A8F02

01 BA B5

01 BB 6F

MVI C,0 ,CLEAR CHECKSUM

LXI H,DMADDR

LDA POINT ,-POINT TO SECTOR QUARTER

ORA L

MOV L,A ,OR DATA INTO LSB

186 APPENDIX E



01 BC 79 SEND): MOV A,C ;FORM CHECKSUM

01 BD 86 ADD M
01 BE 4F MOV C,A

01 BF 7E MOV A,M ;GET CHARACTER

01 CO E5 PUSH H ;SAVE ADDRESS

01 CI CDD901 CALL SHOUT ;OUTPUT HEX DIGITS

01C1 EI POP H

01 C5 2C INR L ;NEXT 8YTE

01 C6 7D MOV A,L

01 C7 E61F ANI 1FH ;CHECK FOR MOD 32

01 C9 C2BC01 JNZ SEND! ,DO 32 TIMES

01 CC 79 MOV A,C ,-FIX CHECKSUM

01 CD EEFF XRI OFFH

01 CF 3C INR A

01 DO CDD90I CALL SHOUT

01 D3 3E0D MVI A,0DH

01 D5 CDF001 CALL SOUT

01 D8 C9 RET

01 D9 F5 SHOUT: PUSH PSW

01 DA OF RRC

01 DB OF RRC

01DC OF RRC

01DD OF RRC

01 DE CDE201 CALL SNOUT ,OUTPUT HIGH NI88LI

01E1 Fl POP PSW

01 E2 E60F SNOUTi ANI OFH ;MASK OFF BITS

01 E4 FEOA CPI 10

01 E6 DAEE01 JC SNUM

01 E9 C637 ADI 'A'- 10

01 EB C3F001 JMP SOUT

01 EE C630 SNUM: ADI '0'

01 FO F5 SOUT: PUSH PSW

01 Fl DB06 SOUTHN 06H ,XEROX CHANNEL A C

APPENDIX E 187



01 F3 E604 ANI 04H

01 F5 CAF101 JZ SOUT1

01F8 Fl POP PSW

01 F9 D304 OUT 04H

01 FB C9 RET

01 FC DB06 SIN: IN 6

01 FE E601 ANI 01H

0200 CAFC01 JZ SIN

0203 DB04 IN 4

0205 C9 RET

0206 7C SETUP: MOV A,H

0207 D306 OUT 6

0209 7D MOV A,l

020A D306 OUT 6

020C C9 RET

020D 0E1A SETDMA: MVI C.26

020F CD0500 CALL BDOS

0212 C9 RET

0213 OEOF OPEN: MVI C,15

0215 CD0500 CALL BDOS

0218 C9 RET

0219 0E14 READ: MVI C,20

0218 CD0500 CALL BDOS

021 E C9 RET

02 IF 0E09 PRINT- MVI C,9

0221 CD0500 CALL BDOS

0224 C9 RET

0225 46494C454E NONAME: DB

0242 414D424947 BADNAM: D8

0260 49204341 4E NOFlLE: DB

;XEROX CHANNEL A DATA

'FILENAME MUST BE SPECIFIED',0DH.0DH.'$'

'AMBIGUOUS FILES NOT

ALLOWED',0DH,0DH,'$'

'I CANNOT FIND THAT FILE',0DH,0DH,'$'

188 APPENDIX E



027A 54524UE53 EOTRAN: DB 'TRANSFER COMPLETE.',0DH,0DH,'$'

028F POINT: DS 1

0290 DS 32

02B0 = STACK EQU $

I/O Configuration Utility for Commodore 64

COPYRIGHT © 1982
COMMODORE INTERNATIONAL

FCOO = IOMEM EQU 0FC00H

F800 = BUFFER EQU 0F800H

FCFF = IOTYPE EQU OFCFFH

FC10 = FNBASE EQU 0FC10H

FDOO = KYBASE EQU 0FD00H

0001 = VICWR EQU 1

F900 = CMD EQU 0F900H

F90I = DATA EQU 0F901H

F902 = SECTOR EQU F902H

F903 = TRACK EQU 0F903H

F904 = DISKNO EQU 0F904H

F905 = KYCHAR EQU 0F905H

0033 = KYBDMD EQU 33H

0001 = CRPOS EQU 1

F28D = SHFTST EQU 0F28DH

0063 = LASTKY EQU 63H

0066 = MSGPTR EQU 66H

0009 = CONINV EQU 09H

0001 = OFF EQU 01H

CEOO = MODESW EQU 0CE0OH

0000 = BOOT EQU 00O0H

0005 = BDOS EQU 0005H

OOOC = CLS EQU OCH

OOOD = CR EQU ODH

OOOA = LF EQU OAH

0100 ORG 100H

APPENDIX E 189



0100 318308 START: LXI SP,STACK INITIALIZE STACK PTR

0103 115E04 LXI D.IOMSG

0106 CD7101 CALL PRINT

0109 3AFFFC LDA IOTYPE

010C E601 AMI 01

H

.# OF DISKS

01 OE C631 ADI 'V ,FORM ASCII

0110 5F MOV E,A

0111 CD7601 CALL CONOUT

0114 11C204 LXI D.PRTMSG

0117 CD7I01 CALL PRINT

011A 11D604 LXI D,P1515

01 ID 3AFFFC LDA IOTYPE

0120 E602 AMI 02H ;CHECK PRINTER TYPE

0122 CA2801 JZ ST1 ;1515IF=

0125 11DD04 LXI D.P4022 ,4022 IF = 1

0128 CD710I ST1: CALL PRINT

0128 11E404 LXI D.CAPMSG

012E CD7I01 CALL PRINT

0131 11FB04 LXI D,ONMSG iASSUME ON

0134 3AFFFC LDA IOTYPE

0137 E620 ANI 20H ;8lT 5

0139 CA3F0I JZ ST2

013C 110005 LXI D,OFFMSG

013F CD7101 ST2: CALL PRINT

0142 110605 LXI D,MENU

0145 CD7101 CALL PRINT

0148 CD7B01 ST3: CALL KEYIN

0148 FE31 CPI r
014D CA920I JZ CHGDRV

190 APPENDIX E



0150 FE32 CPI T
0152 CA9D01 JZ CHRPRT

0155 FE33 CPI '3'

0157 CAB601 JZ CHGCAP

01 5A FE34 CPI '4'

015C CAC001 JZ CHGFNC

01 5F FE35 CPI '5'

0161 CACD02 JZ CHGKEY

0164 FE36 CPI '6'

0166 CA1A04 JZ SAVDSK

0169 FE37 CPI •7

01 6B CAOOOO JZ BOOT

01 6E C34801 JMP ST3

0171 0E09 PRINT; MVI C,9

0173 C30500 JMP BDOS

0176 0E02 CONOUT MVI C,2

0178 C30500 JMP BDOS

01 7B 1EFF KEYIN: MVI E,0FFH

01 7D 0E06 MVI C,6

01 7F C30500 JMP BDOS

0182 2A0100 CONIN: LHLD BOOT+1

0185 2E09 MVI L,CONINV

0187 E9 PCHL

0188 3200F9 IO6510: STA CMD

01 BB 3E01 MVI A,OFF

01 8D 3200CE STA MODESW

0190 00 NOP

0191 C9 RET

0192 3AFFFC CHGDRVi LDA IOTYPE

,NOT A VALID RESPONSE

APPENDIX E 191



0195 EE01 XRI 01

H

0197 32FFFC STA IOTYPE

019A C30001 JMP START

01 9D 21FFFC CHGPRT: 1X1 H,IOTYPE

01 AO 7E MOV A,M

01 Al E602 ANI 02H

01 A3 CAAD01 JZ CHGP1

01A6 7E MOV A,M ,-GET IOTYPE

01A7 E6F1 ANI 0F1H .CLEAR BITS FOR 1515 PRINTER

01 A9 77 MOV M.A

01AA C30001 JMP START

01 AD 7E CHGP1: MOV A,M ,-GET IOTYPE

01 AE E6FB ANI OFBH ;CLEAR BIT 2

01 BO F60A ORI OAH jSET BITS FOR 4022 PRINTER

01 B2 77 MOV M,A

01 B3 C30001 JMP START

01 B6 21FFFC CHGCAP: LXI H, IOTYPE

01 B9 7E MOV A,M

01 BA EE20 XRI 20H ,-INVERT BIT

01 BC 77 MOV M,A

01 BD C30001 JMP START

01 CO 11707 CHGFNO. 1X1 0,FNKMSG

01C3 CD7101 CALL PRINT

01 C6 3EO0 MVI A,0

01 C8 325F08 STA KYMODE

01 CB UA007 FNNEXT: LXI D,FM1

01CE CD7101 CALL PRINT

01 Dl 3A5F08 LDA KYMODE

01 D4 C631 ADI t
01 D6 5F MOV E,A

01 D7 CD7601 CALL CONOUT

01 DA 11A407 LXI D,FM2

01 DD CD7101 CALL PRINT

01 EO CDA802 CALL CALCAD

192 APPENDIX E



01 E3 7E FN2 MOV A,M

01 E4 23 INX H

01 E5 FE20 CPl 20H

01 E7 DAF301 JC CONTRL

01 EA 5F MOV E,A

01 EB E5 PUSH H

01 EC CD7601 CALL CONOUT

01 EF El POP H

01 F0 C3E301 JMP FN2

01 F3 F5 CONTP.L. PUSH PSW

01 F4 1E22 MVI E,""

01 F6 CD7601 CALL CONOUT

01 F9 Fl POP PSW

01 FA FEOO CPl

01 FC CA0502 JZ CRLF

01 FF 11A907 LXl D,CRM

0202 CD7101 CALL PRINT

0205 11A.E07 CRLF: LXl CD,CRLFM

0208 CD7101 CALL PRINT

020B 215F08 LXl H,KYMODE

020E 34 INR M
020F 7E MOV A,M

0210 FEO^' CPl 8

0212 C2CB01 JNZ FNNEXT

0215 11B107 LXl D.FNINST

0218 CD7101 CALL PRINT

021 B CD7B01 ASKAGN. CALL KEYIN

021 E D631 SUI '1'

0220 DA1B02 JC ASKAGN

0223 FE08 CPl 8

025 CA0001 JZ START

0228 D21B02 JNC ASKAGN

022B 325F08 STA KYMODE

APPENDIX E 193



022E 111C08 LXI D,FM3

0231 CD7101 CALL PRINT

0234 11A007 LXI D,FM1

0237 CD7101 CALL PRINT

023A 3A5F08 LDA KYMODE ,-GET CURRENT FN #

023D C631 ADI •V .FORM ASCII

023F 5F AAOV E,A

0240 CD7601 CALL CONOUT

0243 11A407 LXI D,FM2

0246 CD7101 CALL PRINT

0249 CDA802 CALL CALCAD

024C 225D08 SHLD KYADDR

024F 3EO0 MVI A,0

0251 326208 STA NUMCHR

0254 CD7B01 INLOOP: CALL KEYIN

0257 FEOD CPI ODH

0259 CA8502 JZ ITSCR

025C FE08 CPI 08H

025E CAB902 JZ ITS8S

0261 FE1A CPI 1AH

0263 CA9102 JZ ITSCZ

0266 FE20 CPI 20H

0268 DA5402 JC INLOOP

026B FEBO CPI 80H

026D D25402 JNC INLOOP

0270 47 MOV B,A ,SAVE CHAR

0271 3A6208 LDA NUMCHR

0274 FEOF CPI 15 ;IF ALREADY 15 CHAR,

0276 D25402 JNC INLOOP ,- NO ROOM FOR 00H

0279 C5 PUSH B

027A 58 MOV F-,B

194 APPENDIX E



027B CD7601

027E CI

027F CD9902

0282 C35402

0285 47

0286 3A6208

0289 FEOF

028B D25402

ITSCR:

CALL CONOUT

POP B

CALL OUTPUT

JMP INLOOP ,GO FOR MORE

MOV B,A ,SAVE CHAR

LDA NUMCHR

CPI 15 ;NO ROOM IF 15 CHAR

JNC INLOOP

028E CD9902 CALL OUTPUT

0291 0600

0293 CD9902

0296 C3C001

ITSCZ: MVI

CALL

JMP

B,0

OUTPUT

CHGFNC

0299 2A5D08

029C 3A6208

029F 3C

02A0 326208

02A3 3D

02A4 85

02A5 6F

02A6 70

02A7 C9

OUTPUT. LHLD

LDA

INR

STA

DCR

ADD

MOV

MOV

RET

KYADDR

NUMCHR

A

NUMCHR

A

L

L,A

M,B

;ADD IN OFFSET

02A8 2110FC

02AB 1600

02AD 3A5F08

02B0 17

02B1 17

02B2 17

02B3 17

02B4 E6F0

02B6 5F

02B7 19

02B8 C9

CALCAD: LXI

MVI

LDA

RAL

RAL

RAL

RAL

ANI

MOV

DAD

RET

H.FNBASE

D,0

KYMODE

0F0H

E,A

D

02B9 3A6208

02BC FEO0

ITSBS: LDA

CPI

NUMCHR

APPENDIX E 195



02BE CA5402 JZ INLOOP ;IF JUST GC

02C1 3D DCR A

02C2 326208 STA NUMCHR

02C5 326208 STA NUAACHR

02C5 1E08 MVI E,08H BACKSPACE

02C7 CD7601 CALL CONOUT

02CA C35402 JMP INLOOP

02CD 114306 CHGKEY- LXI D,KYlNST

02D0 CD7101 CALL PRINT

02D3 U2F07 CK0. LXI D,PRSMSG

02D6 CD7101 CALL PRINT

02D9 CD8201 CALL CONIN

02DC 2A0100 LHLD BOOT+1

02DF 2E33 MVI L,KYBDMD UNSHIFT = 0, CAPS=1

02E1 46 MOV B,M

02E2 3A8DF2 LDA SHFTST GET MODIFIER STATUS

02E5 E601 ANI 01

H

IS SHIFT KEY DOWN'

02E7 CAEC02 JZ CK1 JUMP IF NO

02EA 0602 MVI B.2 SHIFT = 2

02EC 3A8DF2 CK1- LDA SHFTST

02EF E604 ANI 04H ;IS THE CONTROL KEY DOWN?

02F1 CAF602 JZ CK2 JUMP IF NO

02F4 0603 MVI B,3 CONTROL = 3

02F6 2A0100 CK2. LHLD BOOT+1

02F9 2E63 MVI L,LASTKY

02FB 7E MOV A,M

02FC 326008 STA KYCHK SAVE FOR EXIT TEST

02FF 87 ADD A *2

0300 B7 ADD A *4

0301 80 ADD B ADD IN OFFSET

0302 2100FD LXI H.KY8ASE

0305 85 ADD L

0306 6F MOV L,A •HL NOW HAS ADDRESS OF KE

196 APPENDIX E



0307 225D08 SHLD KYADDR ,ADDRESS OF KEY

030A 78 MOV A,B ,8 IS THE MODE

030B 325F08 STA KYMODE

030E 2A0100 LHLD BOOT+1

0311 2E66 MVI L.MSGPTR

0313 3600 MVI M,0

0315 23 INX H

0316 3600 MVI M,0 ,DISA8LE MESSAGE MODE IF ANY

0318 113C07 LXI D.ISMSG

031 B CD7101 CALL PRINT

031 E 2A5D08 LHLD KYADDR

0321 7E MOV A,M ,GET KEY CODE

0322 CD6A03 CALL PHEX , AND PRINT IN HEX

0325 114107 LXI D,INMSG

0328 CD7101 CALL PRINT

032B 3A5F08 LDA KYMODE

032E 115E07 LXI D.UNSH
;
UNSHIFT MODE IF

0331 FEOO CPI

0333 CA4903 JZ PMODE

0336 114607 LXI D.CAPS

0339 FE01 CPI 1

033B CA4903 JZ PMODE ;CAPS MODE IF 1

033E 114E07 LXI D,SHIFT

0341 FE02 CPI 2

0343 CA4903 JZ PMODE ;SHIFT MODE IF 2

0346 115607 LXI D.CONT ,MUST 8E CONTROL MODE

0349 CD7101 PMODE: CALL PRINT

034C 116607 LXI D,MODE

034F CD7101 CALL PRINT

0352 CD8603 CALL GHEX

APPENDIX E 197



0355 C26303 JNZ ASGKEY

0358 3A6008 LDA KYCHK ,NO CHARACTERS, 2 CR'S?

035B FE01 CPI CRPOS ,IS IT CR KEY POSITION?

035D CA0001 JZ START ,-RESTART IF 2 CR'S

0360 C3D302 JMP CKO ,NEXT KEY

0363 2A5D08 ASGKEY. LHLD KYADDR

0366 77 MOV M,A ;PUT NEW CHARACTER IN

MEMORY

0367 C3D302 JMP CKO

036A F5 PHEX: PUSH PSW ;SAVE CHARACTER

036B OF RRC

036C OF RRC

036D OF RRC

036E OF RRC

036F CD7303 CALL HEX ,-PRINT TOP NIBBLE

0372 Fl POP PSW ;PRINT LOWER NIBBLE

0373 E60F

0375 FEOA

0377 DA80O3

037A C637

037C fF

037D C37601

HEX. ANI OFH ,4 bits

CPI 10 ;LETTER OR NUMBER'

JC NUM8ER

ADI 'A'-10 ;MAKE HEX LETTER

MOV E,A

JMP CONOUT

0380 C630 NUMBER. ADI '0'

0382 5F MOV E,A

0383 C37601 JMP CONOUT

,MAKE ASCII NUMBER

0386 3E0O GHEX : MVI A,0

0388 326208 STA NUMCHR

038B CD8201

038E FEOD

0390 C2A503

GHO: CALL CONIN

CPI ODH

JNZ GH1

0393 3A6208 LDA NUMCHR

198 APPENDIX E



0396 FE00 CPI

0398 C8 RZ

0399 FE02 CPI 2

039B C28B03 JNZ GMO

039E 3EFF MVI A,OFFH

03A0 A7 ANA A

03A1 3A6108 LDA MEXIN

03A4 C9 RET

03A5 FE08 GH1: CPI 08H

03A7 C2CA03 JNZ GH4

03AA 3A6208 LDA NUMCHR

03AD FEOO CPI

03AF CA8B03 JZ GHO

03B2 3D DCR A

03B3 326208 STA NUMCHR

03B6 3A6108 LDA HEXIN

03B9 OF RRC

03BA OF RRC

03BB OF RRC

03BC OF RRC

03BD E60F ANI OFH

03BF 326108 STA HEXIN

03C2 1E08 MVI E08H

03C4 CD7601 CALL CONOUT

03C7 C38B03 JMP GHO

03CA 47 GH4: MOV B,A

03CB 3A6208 LDA NUMCHR

03CE FE02 CPI 2

03DO CA8B03 JZ GHO

03D3 78 MOV A.B

03D4 FE30 CPI '0'

03D6 DA8B03 JC GHO

03D9 FE3A CPI '9'+l

03DB DAFF03 JC GOTNUM

,JUMP NOT 8ACKSPACE

APPENDIX E 199



03DE FE41 CPI 'A'

03EO DA8803 JC GH0

03E3 FE47 CPI 'F'+l

03E5 DAF203 jC GOTLET

03E8 FE61 CPI 'A

03EA DA8803 JC GH0

03ED FE67 CPI 'F'+l

03EF D28803 JNC GH0

03F2 F5 GOTLET PUSH PSW

03F3 5F MOV E,A

03F4 CD7601 CALL CONOUT

03F7 Fl POP PSW

03F8 E60F ANI OFH

03FA C609 ADI 9

03FC C30504 JMP MAKNUM

03FF F5 GOTNUM. PUSH PSW

0400 5F MOV E,A

0401 CD7601 CALL CONOUT

0404 Fl POP PSW

0405 E60F MAKNUM: ANI OFH

0407 47 MOV B,A

0408 3A6108 LDA HEXIN

0408 87 ADD A

040C 87 ADD A

040D 87 ADD A

040E 87 ADD A

040F 80 ADD B

0410 326108 STA HEXIN

0413 216208 LXI H,NUMCHR

0416 34 INR M

0417 C38803 JMP GH0

200 APPENDIX E



041A 2100FC SAVDSK LXI HJOMEM

041 D 3E03 MVI A,3

041 F 3202F9 STA SECTOR

0422 110OF8 SAV2; LXI D,BUFFER

0425 7E SAV1: MOV A,M

0426 12 STAX D

0427 23 INX H

0428 13 INX D

0429 7D MOV A,L

042A A7 ANA A

042B C22504 JNZ SAV1 -256 TIMES

042E 3E0O MVI A,0

0430 3204F9 STA DISKNO

0433 3C INR A

0434 3203F9 STA TRACK

0437 3E01 MVI A,VICWR

0439 CD8801 CALL IO6510

043C 3A01F9 LDA DATA

043F A7 ANA A

0440 C25204 JNZ WRERR

0443 3A02F9 LDA SECTOR

0446 3C INR A

0447 3202F9 STA SECTOR

044A FE05 CPI 5

044C C22204 JNZ SAV2 ;WRITE SEC

044F C30001 JMP START

0452 111306 WRERR: LXI D,WERMSG

0455 CD7101 CALL PRINT

0458 CD8201 CALL CONlN

045B C30001 JMP START

MESSAGES

APPENDIX E 201



045E OC0A434F4D IOMSG: DB

0489 5448452043 DB

04AC 20204E554D DB

CLS,LF,'COMMODORE 64 I/O CONFIGURATION

UTILITY' CR,LF,LF

'THE CURRENT I/O ASSIGNMENTS

ARE.',CR,LF,LF

' NUMBER OF DRIVES. $'

04C2 0D0A PRTMSG: DB

04C4 2020505249 DB

CR.LF

' PRINTER TYPE: $'

04D6 313531350D P1515. DB '1515',CR,LF,$'

04DD 343032320D P4022 DB '4022',CR,LF,'$'

04E4 2020494E49 CAPMSG: DB ' INITIAL CAPS MODE. $'

04FB 4F4E0D0A24 ONMSG DB 'ON',CR,LF,'$'

0500 4F4646OD0A OFFMSG: DB 'OFF',CR,LF,'$'

0506 OAOA MENU. DB

0508 444F20594F DB

051A 20203 12E20 DB

053E 2020322E20 DB

0559 2020332E20 DB

0579 2020342E20 DB

05A0 2020352E20 DB

05BB 2020362E20 DB

05DE 2020372E20 DB

05F5 504C454153 DB

LF.LF

'DO YOU WISH TO',CR,LF,LF

' 1. CHANGE NUMBER OF DISK DRIVES',CR,LF

' 2. CHANGE PRINTER TYPE',CR,LF

' 3. CHANGE INITIAL CAPS MODE',CR,LF

' 4. CHANGE FUNCTION KEY

ASSIGNMENTS', CR,LF

' 5. CHANGE KEY CODES', CR,LF

' 6 SAVE CURRENT I/O SETUP ON DISK'.CR.LF

' 7. RETURN TO CP/M',CR,LF,LF

'PLEASE ENTER SELECTION (1-7) $'

0613 0D0A0A4449 WERMSG: DB

0628 5052455353 DB

0643 OC0A KYINST, DB

0645 5052455353 DB

0665 544F204348 DB

06B8 2020204845

06AB 544F204558

06D1 2020205457

06EE 544F204B45

DB

DB

DB

DB

CR,LF,LF,'DISK WRITE ERROR',CR,LF

'PRESS ANY KEY TO CONTINUE $'

CLS,LF

'PRESS KEY TO EXAMINE KEY CODE',CR,LF,LF

TO CHANGE KEY CODE, ENTER DATA

IN', CR.LF

' HEXADECIMAL AFTER "CHANGE

TO"',CR,LF,LF

'TO EXIT KEY CODE MODE, TYPE

"RETURN" '.CR,LF

' TWICE AFTER "PRESS KEY" ',CR,LF,LF

'TO KEEP CURRENT KEY CODE, TYPE',CR,LF

202 APPENDIX E



070E 2020202252 DB ' "RETURN" AFTER "CHANGE TO" ',CR,LF,LF

072E 24 DB '$'

072F 0D0A505245 PRSMSG: DB CR,LF,'PRESSKEY$'

073C 0D49532024 ISMSG: DB CR,'IS $' ^

0741 20494E2024 INMSG: DB 'IN$'

0746 4341505320 CAPS DB 'CAPS $'

074E 534849465 SHIFT: DB 'SHIFT $'

0756 434F4E5452 CONT. DB 'CONTROL!'

075E 554E534849 UNSH: DB 'UNSHIFTI'

0766 204D4F4445 MODE. DB ' MODE— CHANGE TO $'

0779 0C0A544845 FNKMSG: DB CLS,LF,THE FUNCTION KEY ASSIGNMENTS

ARE ',CR,LF,LF

079F 24 DB •$'

07A0 20204624 FM1 DB •F$'

07A4 3A20202224 FM2 DB

07A9 3C43523E24 CRM DB '<CR>$'

07AE 0D0A24 CRLFM DB CR,LF,'$'

07B1 0A454E5445 FNINST DB

07D3 2020544F20 DB

07F0 454E544552 DB

080B 20204B4559 DB

LF/ENTER FUNCTION KEY NUMBER

(1-8)',CR,LF

'TO CHANGE PRESET VALUES.',CR,LF,LF

'ENTER 9 TO LEAVE FUNCTION',CR,LF

' KEY UTILITY. $'

081 C 0D0A0A5459 FM3 DB

083D 20204F5220 DB

CR,LF.LF,'TYPE IN TEXT. USING

"RETURN" ',CR,LF

' OR "CTRL-Z" AS TERMINATOR.',CR,LF,LF,'$'

085D KYADDR DS 2 ,-KEYBOARD LOOKUP ADDRESS

0B5F KYMODE DS 1 ;KEYBOARD MODE

0860 KYCHK DS 1

0861 HEXIN DS 1

0862 NUMCHR DS 1

0863 DS 32

0883 = STACK EQU $

APPENDIX E 203



SYSGEN — System Generation Program 8/79

System Generation Program, Version for MDS

COPYRIGHT © DIGITAL RESEARCH
1976, 1977, 1978, 1979

MODIFICATIONS COPYRIGHT © 1982

COMMODORE INTERNATIONAL

Modified for use on Commodore 64. The system sectors

run linearly from Track 1 Sector to Track 2 Sector 16.

0022 = NSECTS EQU 34

0002 = NTRKS EQU 2

0003 = NDISKS EQU 3

0080 = SECSIZ EQU 128

0007 = LOG2SEC EQU 7

0001 = SKEW EQU 1

005C = FCB EQU 005CH

007C = FCBCR EQU FCB + 32

0100 = TPA EQU 0100M

0900 = LOADP EQU 900H

0005 = BDOS EQU 5H

0000 = BOOT EQU

0001 =: CONI EQU 1

0002 = CONO EQU 2

000E = SELF EQU 14

000F = OPENF EQU 15

0014 = DREADF EQU 20

,NO. OF SECTORS PER TRACK

.LAST OS TRACK + 1

;NUMBER OF DISK DRIVES

,SIZE OF EACH SECTOR

,LOG 2 SECSlZ

.SECTOR SKEW FACTOR

jDEFAULT FCB LOCATION

.CURRENT RECORD LOCATION

.TRANSIENT PROGRAM AREA

,-LOAD POINT FOR SYSTEM

DURING LOAD/STORE

;DOS ENTRY POINT

;JMP TO 'BOOT' TO REBOOT

SYSTEM

.CONSOLE INPUT FUNCTION

.CONSOLE OUTPUT FUNCTION

.SELECT DISK

.DISK OPEN FUNCTION

.DISK READ FUNCTION

000A = MAXTRY EQU 10

000D = CR EQU 0DH

000A = LF EQU 0AH

0010 = STACKSIZE EQU 16

0001 = WBOOT EQU

204 APPENDIX E

;MAXIMUM NUMBER OF RETRIES

ON EACH READ/WRITE

.CARRIAGE RETURN

.LINE FEED

.SIZE OF LOCAL STACK



.ADDRESS OF WARM BOOT

(OTHER PATCH ENTRY

;
POINTS ARE COMPUTED RELATIVE

TO WBOOT)

0018 = SELDSK EQU 24 ;WBOOT + 24 FOR DISK SELECT

001

B

= SETTRK EQU 27 ,WBOOT + 27 FOR SET TRACK

FUNCTION

001

E

= SETSEC EQU ,.130 .WBOOT + 30 FOR SET SECTOR

FUNCTION

0021 = SETDMA EQU 33 ,WBOOT + 33 FOR SET DMA

ADDRESS

0024 = READF EQU 36 ,WBOOT + 36 FOR READ

FUNCTION

0027 WRITF EQU 39 .WBOOT + 39 FOR WRITE

FUNCTION

0100 ORG TPA TRANSIENT PROGRAM AREA

0100 C32302 JMP START

0103 434F505952 DB 'COPYRIGHT @ 1978, DIGITAL RESEARCH '

0128 02 OST DB NTRKS .OPERATING SYSTEM TRACKS

0129 22 SPT: DB NSECTS .SECTORS PER TRACK (CAN BE

PATCHED)

GETCHAR:

01 2A 0E01CD0500

01 2F FE61D8

0132 FE78

0134 DO

0135 E65FC9

READ CONSOLE CHARACTER TO REGISTER A

MVI CCONIT ' CALL BDOS'

CONVERT TO UPPER CASE BEFORE RETURN

CPI 'A' OR 20H I RC .RETURN IF BELOW LOWER CASE A

CPI ('Z' OR 20H) + 1

RNC .RETURN IF ABOVE LOWER CASE Z

ANI 5FH! RET

PUTCHAR.

01 3B 5F0E02CD05

WRITE CHARACTER FROM A TO CONSOLE

MOV E.A! MVI C.CONO! CALL BDOS! RET

CRLF- ,-SEND CARRIAGE RETURN, LINE FEED

013F 3E0D MVI A.CR

0141 CD3801 CALL PUTCHAR

0144 3E0A MVI A.LF

APPENDIX E 205



0146 CD3801

0149 C9

CALL PUTCHAR

RET

01 4A E5CD3F01E1

01 4F 7EB7C8

0152 E5CD3801E1

015B C34F01

CRMSG: ;PRINT MESSAGE ADDRESSED BY H, L TIL ZERO

;WITH LEADING CRLF

PUSH H! CALL CRLFi POP H

;DROP THRU TO OUTMSG0

OUTMSG:

MOV A,M! ORA A! RZ

; MESSAGE NOT YET COMPLETED

PUSH Hi CALL PUTCHAR! POP Hi INX H

JMP OUTMSG

SEL:

015B 4F2A010011

SELECT DISK GIVEN BY REGISTER A

MOV C,A! LHLD WBOOT! LXI D.SELDSK! DAD D! PCHL

TRK: iSET UP TRACK

0164 2A0100 LHLD WBOOT ;ADDRESS OF BOOT ENTRY

0167 111B00 LXI D,SETTRK /OFFSET FOR SETTRK ENTRY

016A 19 DAD D

016B E9 PCHL ,GONE TO SETTRK

SEC : iSET UP SECTOR NUMBER

01 6C 2A0100 LHLD WBOOT

01 6F 111E0O LXI D,SETSEC

0172 19 DAD D

0173 E9 PCHL

DMA: ;SET DMA ADDRESS TO VALUE OF B, C

0174 2A0100 LHLD WBOOT

0177 112100 LXI D.SETDMA

017A 19 DAD D

017B E9 PCHL

READ: ,-PERFORM READ OPERATION

01 7C 2A0100 LHLD WBOOT

01 7F 112400 LXI D.READF

0182 19 DAD D

0183 E9 PCHL

WRITE- .-PERFORM WRITE OPERATION

206 APPENDIX E



0184 2A0100

0187 112700

018A 19

01 8B 0E00

01 8D E9

LHLD WBOOT

1X1 D.WRITF

DAD D

MVI C,0

PCHL

,SET UP NORMAL SECTOR WRITE

DREAD: :DISK READ FUNCTION

018E 0E14 MVI C.DREADF

0190 C30500 JMP BDOS

0193 OEOFC305OO

OPEN: ,FILE OPEN FUNCTION

MVI COPENF ! JMP BDOS

GETPUT

GET OR PUT CP/M (RW = FOR READ, 1 FOR WRITE)

DISK IS ALREADY SELECTED

0198 21B008

01 9B 225204

LXI H,LOADP-80H ;SET UP INITIAL DMADDR

SHLD

CLEAR TRACK TO 00

01 9E 3E0O MVI A,0

01 AO 324F04 STA TRACK

01 A3 4F MOV C,A

01 A4 CD6401 CALL TRK

01 A7 3E09 MVI A.9

01 A9 325004 STA SECTOR

01AC C3C301 JMP RWSEC

,-START WITH TRACK + 1

JRACK NUMBER TO BIOS

.SECTOR 10 (-1)

RWTRK: ,READ OR WRITE NEXT TRACK

01AF 214F04 LXI H.TRACK

01 B2 34 INR M JRACK = TRACK + 1

01 B3 3A2801 LDA OST ,-NUMBER OF OPERATING SYSTEM

TRACKS

01 B6 BE CMP M ,-= TRACK NUMBER?

01 B7 CA2202 JZ ENDRW ;END OF READ OR WRITE

01 BA 4E

01 BB CD6401

01 BE 3EFF

OTHERWISE NOTDONE, GO TO NEXT TRACK

MOV C,M JRACK NUMBER

CALL TRK ,TO SET TRACK

MVI A,0FFH ,COUNTS0, 1, . . 33

APPENDIX E 207



01 CO 325004 STA SECTOR ,SECTOR INCREMENTED BEFORE

READ OR WRITE

RWSEC- ,READ OR WRITE SECTOR

01 C3 3A2901 LDA SPT

01C6 215004 1X1 M.SECTOI

01 C9 34 INR M
01 CA BE CMP M

01 CB CAAF01 JZ RWTRK

01 CE 2A5204 LriLD DMADDR
01D1 118000 1X1 D.80H

01D4 19 DAD D

01D5 225204 SHLD DMADDR

iSECTORS PER TRACK

;TO NEXT SECTOR

;A=34ANDM=0 1 2 .33

(USUALLY)

;SET UP DMA FOR NEXT ADDR

.SECTOR SIZE

,DMADDR = DMADDR + 80H

01 D8 215004

01DB 4E

01 DC CD6C01

01 DF 2A5204

01 E2 44

01 E3 4D

01 E4 CD7401

01 E7 AF

01 EB 325404

READ OR WRITE SECTOR TO OR FROM CURRENT DMA
ADDR

H,SECTOR

,-VALUE TO C READY FOR SELECT

,SET UP SECTOR NUMBER

:BASE DMA ADDRESS FOR THIS

TRACK

,TO BC FOR SEC CALL

,DMA ADDRESS SET FROM B,C

DMA ADDRESS SET, CLEAR RETRY COUNT

XRA A

STA RETRY
;SET TO ZERO RETRIES

LXI H,SECTOR

MOV C,M

CALL SEC

LHLD DMADDR

MOV B,H

MOV C,L

CALL DMA

TRYSEC: ;TRY TO READ OR WRITE CURRENT SECTOR

01 EB 3A5404 LDA RETRY

01 EE FE0A CPI MAXTRY ;TOO MANY RETRIES?

01 F0 DA0702 JC TRYOK

PAST MAXTRIES, MESSAGE AND IGNORE

01F3 21C303 LXI H ERRMSG

01 F6 CD4F01 CALL OUTMSG

01 F9 CD2A01 CALL GETCHAR

01 FC FE0D CPI CR

01FE C20E03 JNZ REBOOT

20B APPENDIX E



0201 CD3F01

0204 C3C301

TYPED A CR, OK TO IGNORE

CALL CRLF

JMP RWSEC

TRYOK:

0207 3C

0208 325404

020B 3A5104

020E B7

020F CA1802

OK TO TRY READ OR WRITE

INR A

STA RETRY ,REDAY= RETRY +

1

LDA RW ;READ OR WRITE'

ORA A

JZ TRYREAD

0212 CD8401

0215 C31B02

0218 CD7C01

021 B B7

021C CAC301

TRYREAD-

CHKRW:

MUST BE WRITE

CALL WRITE

JMP CHKRW ,-CHECK FOR ERROR RETURNS

CALL READ

ORA A

JZ RWSEC ;ZERO FLAG IF R/W OK

021 F C3EB01

ERROR, RETRY OPERATION

JMP TRYSEC

0222 C9

ENDRW. ;END OF READ OR WRITE, RETURN TO CALLER

RET

START.

0223 317504

0226 212003

0229 CD4F01

LXI SP.STACK ;SET LOCAL STACK POINTER

LXI H,SIGNON

CALL OUTMSG

CHECK FOR DEFAULT FILE LOAD INSTEAD OF GET

022C 3A5D00 LDA

022F FE20 CPI

0231 CA8102 JZ

FCB+1 ,BLANK IF NO FILE

GETSYS ;SKIP TO GET SYSTEM MESSAGE

IF BLANK

APPENDIX E 209



0234 115C0O

0237 CD9301

023A 3C

023B C24702

1X1 D,FCB

CALL OPEN

INR A

JNZ RDOK

;TRY TO OPEN IT

,255 BECOMES 00

,OK TO READ IF NOT 255

FILE NOT PRESENT, ERROR AND REBOOT

023E 212004

0241 CD4A01

0244 C30E03

LXI H.NOFILE

CALL CRMSG

JMP REBOOT

FILE PRESENT

READ TO LOAD POINT

0247 AF

0248 327C00

RDOK:

XRA A

STA FCBCR .CURRENT RECORD =

PRE-READ AREA FROM TPA TO LOADP

024B 0E10

025D 210009

0260 E5

0261 44

0262 4D

0263 CD7401

PRERD

MVI C,(LOADP-TPA)/SECSIZ

PRE-READ FILE

024D C5 PUSH B

024E 115C00 LXI D,FCB

0251 CD8E01 CALL DREAD

0254 CI POP B

0255 B7 ORA A

0256 C27B02 JNZ BADRD

0259 0D DCR C

025A C24D02 JNZ PRERD

,SAVE COUNT

;INPUT FILE CONTROL COUNT

;ASSUME SET TO DEFAULT BUFFER

RESTORE COUNT

,CANNOT ENCOUNTER END-OF

FILE

;COUNT DOWN
;FOR ANOTHER SECTOR

SECTORS SKIPPED AT BEGINNING OF FILE

LXI H.LOADP

RDINP:

PUSH H

MOV B,H

MOV C,L

CALL DMA

;READY FOR DMA

;
DMA ADDRESS SET

210 APPENDIX E



0266 115C00 LXI D,FCB READY FOR READ

0269 CD8E01 CALL DREAD

026C El POP H RECALL DMA ADDRESS

026D B7 ORA A 00 IF READ OK

026E C2C702 JNZ PUTSYS ASSUME EOF IF NOT.

; MORE TO READ, CONTINUE

0271 118000 LXI D,SECSIZ

0274 19 DAD D HL IS NEW LOAD ADDRESS

0275 C36002 JMP RDINP

BADRD: ,EOF ENCOUNTERED IN INPUT RLE

0278 213704 LXI H,BADFILE

027B CD4A01 CALL CRMSG

027E C30E03 JMP REBOOT

GETSYS-

0281 212F03 LXI H,ASKGET ,GET SYSTEM?

0284 CD4A01 CALL CRMSG

0287 CD2A01 CALL GETCHAR

028A FE0D CPI CR

028C CAC702 JZ PUTSYS ;SKIP IF CR ONLY

028F D641 SUI 'A' (NORMALIZE DRIVE NUMBER

0291 FE03 CPI NDISKS ;VALID DRIVE'

0293 DA9C02 JC GETC ;SKIP TO GETC IF SO

0296 CD1903

0299 C38102

INVALID DRIVE NUMBER

CALL BADDISK

JMP GETSYS ;TO TRY AGAIN

GETC

029C C641

029E 325F03

02A1 D641

02A3 CD5B01

02A6 CD3F01

02A9 215503

02AC CD4F01

SELECT DISK GIVEN BY REGISTER A

ADI 'A'

STA GDISK ;TO SET MESSAGE

SUI 'A'

CALL SEL ;TO SELECT THE DRIVE

GETSYS, SET RW TO READ AND GET THE SYSTEM

CALL CRLF

LXI H,GETMSG

CALL OUTMSG

APPENDIX E 211



02AF CD2A01 CALL GETCHAR

02B2 FEOD CPI CR

02B4 C20E03 JNZ REBOOT

02B7 CD3F01 CALL CRLF

02BA AF XRA A

02BB 325104 STA RW

02BE CD9801 CALL GETPUT

02C1 21EA03 LXI H,DONE

02C4 CD4F01 CALL OUTMSG

; PUT SYSTEM

PUTSYS:

02C7 217303 LXI H,ASKPUT

02CA CD4A01 CALL CRMSG

02CD CD2A01 CALL GETCHAR

02D0 FEOD CPI CR

02D2 CA0E03 JZ REBOOT

02D5 D641 SUI 'A'

02D7 FE03 CPI NDISKS

02D9 DAE202 JC PUTC

;

INVALID DRIVE NAME

02DC CD1903 CALL BADDISK

02DF C3C702 JMP PUTSYS ,TO TRY AGAIN

PUTC.

; SET DISK FROM REGISTER C

02E2 C641 ADI 'A

02E4 32AF03 STA PDISK ;MESSAGE SET

02E7 D641 SUI 'A'

02E9 CD5B01 CALL SEL ,SELECT DEST DRIVE

. PUT SYSTEM, SET RW TO WRITE

02EC 21AO03 LXI H,PUTMSG

02EF CD40A01 CALL CRMSG

02F2 CD2A01 CALL GETCHAR

02F5 FEOD CPI CR

02F7 C20E03 JNZ REBOOT

02FA CD3F01 CALL CRLF

02FD 215104 LXI H,RW

212 APPENDIX E



0300 3601 MVI M,l

0302 CD9B01 CALL GETPUT ,TO PUT SYSTEM BACK ON

DISKETTE

0305 21EA03 LXI H,DONE

0308 CD4F01 CALL OUTMSG

030B C3C702 JMP PUTSYS ;FOR ANOTHER PUT OPER*

REBOOT:

030E 3EO0

0310 CD5B01

0313 CD3F01

0316 C30000

0319 21FC03

031 C CD4A01

031F C9

BADDISK.

0320 5359534745

032B 322E30

032E 00

032F 534F555243

0340 0D284F5220

0355 534F555243

035F

0360 2C20544845

0373 4445535449

0389 0D284F5220

03A0 4445535449

03AF

03B0 2C20544845

03C3 5045524D41

SIGNON-

ASKGET

GETMSG-

GDISK:

ASKPUT

PUTMSG.

PDISK:

ERRMSG:

03EA 46554E4354 DONE:

03FC 494E56414C QDISK,

0420 4E4F20534F NOFILE

BADFILE:

MVI A,0

CALL SEL

CALL CRLF

JMP BOOT

,BAD DISK NAME

LXI H,QDISK

CALL CRMSG

RET

DATA AREAS

MESSAGES

DB 'SYSGEN VER'

DB VERS/0 + '0','.',VERS MOD lO + 'O
1

DB

DB 'SOURCE DRIVE NAME'

DB 0DH, '(OR RETURN TO SKIP) ',0

DB 'SOURCE ON '

DS 1 /FILLED IN AT GET FUNCTION

DB ', THEN TYPE RETURN',0

DB 'DESTINATION DRIVE NAME'

DB 0DH, '(OR RETURN TO REBOOT) ',0

DB 'DESTINATION ON '

DS 1 .FILLED IN AT PUT FUNCTION

DB ', THEN TYPE RETURN',0

DB 'PERMANENT ERROR, TYPE RETURN TO

IGNORE',0

DB 'FUNCTION COMPLETE',0

DB 'INVALID DRIVE NAME (USE A, B, OR C) ',0

DB 'NO SOURCE FILE ON DISK',0

APPENDIX E 213



; VARIABLES

SDISK- DS 1 ,-SELECTED DISK FOR CURRENT

OPERATION

TRACK: DS 1 CURRENT TRACK

SECTOR: DS 1 ;CURRENT SECTOR

RW: DS 1 .•READ IF 0, WRITE IF 1

DMADDR- DS 2 ,-CURRENT DMA ADDRESS

RETRY: DS 1 ;NUMBER OF TRIES ON THIS

SECTOR

DS STACKSIZE "2

0437 534F555243 DB 'SOURCE FILE INCOMPLETE',0

044E

044F

0450

0451

0452

0454

0455

STACK:

0475 END

Custom BIOS for CP/M 2.2 On Commodore 64

COPYRIGHT © 1982
COMMODORE INTERNATIONAL

This version has the following attributes:

1. Memory map set up for 52K RAM system with I/O

and drivers by BOOT65
2. Disk tables and vectors included for 2 drives

3. The Intel I/O byte is not implemented

4. Punch and reader are null routines

5. Keyboard and message tables are part of BIOS65
6. A 20K to 48K byte CP/M environment can be sup-

ported on the Commodore 64 (44K with IEEE)

7. Virtual Drive B is supported for 1540

8. Drive B is not virtual on IEEE disk

0000 = BASE EQU OOOOH jBEGINNING OF ADDRESSABLE

RAM

002C = MSIZE EQU 44 rCP/M VERSION MEMORY SIZE IN

KILOBYTES

"BIAS" IS ADDRESS OFFSET FROM 3400H FOR MEMORY

SYSTEMS

214 APPENDIX E



6000 = BIAS

THAN 20K (REFERRED TO AS "B" THROUGHOUT THE

TEXT)

EQU (MSIZE-20) *1024

NOTE: TO CREATE MOVCPM, THE FOLLOWING CCP

EQUATES ARE USED-

;CCP EQU

;CCP EQU

9400 = CCP EQU

9C06 = BDOS EQU

AAO0 = BIOS EQU

0004 = CDISK EQU

0003 = IOBYTE EQU

0000 = TRANS EQU

0005 = ENTRY EQU

EQU 0OO0H ;FOR BIOSO.HEX

EQU 0100H iFORBIOSl.HEX

3400H + BIAS ;BASE OF CCP

CCP + 806H BASE OF BDOS

CCP + 1 600H BASE OF BIOS

BASE + 0004H CURRENT DISK NUMBER =

. . . , 15 = P

BASE + 0003H INTEL I/O BYTE

0000H ,0 IMPLIES NO TRANSLATION

0005H ;BDOS ENTRY VECTOR

Z80 INSTRUCTIONS

0018 = JR EQU 18H

0038 = JRC EQU 38H

0030 = JRNC EQU 30H

0028 = JRZ EQU 28H

0020 = JRNZ EQU 20H

THE FOLLOWING EQUATES DEFINE THE COMMON

MEMORY FOR PASSING DATA TO AND FROM THE 6510

I/O ROUTINES

F800 = HSTBUF EQU 0F8O0H

F900 = CMD EQU 0F900H

F901 = DATA EQU 0F901H

F902 = SECTOR EQU 0F902H

F903 = TRACK EQU 0F903H

F904 = DISKNO EQU 0F904H

F905 = KYCHAR EQU 0F905H

256 BYTE DISK BUFFER

COMMAND REGISTER

DATA REGISTER

SECTOR REGISTER

TRACK REGISTER

DRIVE NUMBER REGISTER

KEYBOARD CHARACTER

REGISTER

APPENDIX E 215



FCFF = IOTYPE EQU OFCFFH ,IO CONFIGURATION BYTE

THE Z80 SHUTS ITSELF OFF BY WRITING "OFF" TO THE

LOCATION "MODESW

0001

CEO0

OFF EQU

MODESW EQU

1

0CEO0H

THE FOLLOWING ARE THE COMMANDS TO THE 6510 I/O

ROUTINES

0000 = VICRD EQU

0001 = VICWR EQU 1

0002 = VICIN EQU 2

0003 = VICOUT EQU 3

0004 = VICPST EQU 4

0005 = VICPRT EQU 5

0006 = VICFMT EQU 6

0007 = AUXI EQU 7

0008 = AUX2 EQU 8

0009 = INDIR EQU 9

READ SPECIFIED SECTOR

WRITE SPECIFIED SECTOR

DO A KEYBOARD SCAN

OUTPUT DATA TO SCREEG

GET PRINTER STATUS

SEND CHARACTER TO PRINTER

FORMAT DISK COMMAND

JUMP TO $0EO0 IN 6510 SPACE

JUMP TO $OFO0 IN 6510 SPACE

JUMP INDIRECT VIA 0F906

AA00 ORG BIOS

0016 = NSECTS EQU ($-CCP)/2

i JUMP VECTOR FOR

AAO0 C36CAA JMP BOOT

AA03 C31DAB WBOOTE: JMP WBOOT

AA06 C39AAB JMP CONST

AA09 C3FEAB JMP CONIN

AA0C C376AC JMP CONOUT

AA0F C3B1AC JMP LIST

AA12 C3FAAC JMP PUNCH

AA15 C3FDAC JMP READER

AA18 C302AD JMP HOME

AA1B C30CAD JMP SELDSK

AA1E C320AD JMP SETTRK

AA21 C326AD JMP SETSEC

AA24 C32BAD JMP SETDMA

AA27 C334AD JMP READ

,ORIGIN OF THIS PROGRAM

($-CCP)/256 .WARM START SECTOR COUNT

INDIVIDUAL SUBROUTINES

COLD START

WARM START

iCONSOLE STATUS

.CONSOLE CHARACTER IN

CONSOLE CHARACTER OUT

LIST CHARACTER OUT

PUNCH CHARACTER OUT

READER CHARACTER OUT

MOVE HEAD TO HOME POSITION

SELECT DISK

SET TRACK NUMBER

SET SECTOR NUMBER

SET DMA ADDRESS

READ RISK

216 APPENDIX E



AA2A C347AD JMP

AA2D C3D1AC JMP

AA30 C331AD JMP

AA33 00 KYBDMD- DB

WRITE ,-WRITE DISK

LISTST .RETURN LIST STATUS

SECTRAM ;SECTOR TRANSLATE

O0H ;CAPS LOCK FLAG

FIXED DATA TABLES FOR TWO DRIVES

DISK PARAMETER HEADER FOR DISK 00

AA34 00000000 DPBASE DW TRANS,0000H

AA38 00000000 DW 0000H,0000H

AA3C F0AE54AA DW DIRBF.DPBLK

AA40 AEAF70AF DW CHKO0,ALLO0

DISK PARAMETER HEADER FOR DISK 01

AA44 00000000 DW TRANS,0000H

AA48 00000000 DW 0000H.0000H

AA4C F0AE54AA DW DlRBF.DPBlK

AA50 BEAF8FAF DW CHK01.ALL01

DPBLK ;DISK PARAMETER BLOCK, COMMON TO ALL DISKS

AA54 2200

AA56 03

AA57 07

AA58 00

AA59 8700

AA5B 3FO0

AA5DC0

AA5E 00

AA5F 1000

AA61 0200

DW 34 SECTORS PER TRACK

DB 3 •BLOCK SHIFT FACTOR

DB 7 ;BLOCK MASK

DB ;NULL MASK

DW 135 ;DISK SIZE-1

DW 63 /DIRECTORY MAX

DB 192 .ALLOC

DB ;ALLOC 1

DW 16 ;CHECK SIZE

DW 2 TRACK OFFSET

END OF FIXED TABLES

MEMORY INITIALIZED WHEN BIOS READ IN AT BOOT

TIME

AA63 40 LASTKY: DB 40H ,-VECTOR OF LAST KEY PRESSED

AA64 00 TOGGLE- DB O0H ,CAPS LOCK HOUSEKEEPING

AA65 00 CSTAT: DB O0H jCHARACTER AVAILABLE FLAG

AA66 0000 MSGPTR: DW 0000H .message POINTER

AA68 00FD TBLPTR. DW 0FD00H .KEYBOARD CODE TABLE

APPENDIX E 217



AA6A OOFC MSGTBL: DW 0FC00H ;MESSAGE VECTOR TABLE

MISC. CONSOLE EQUATES

F28D — SHFTST EQU

FOCC = FLASH EQU

FOCF = CURSOR EQU

0F28DH ;CONTROL,COMMODORE,SHIFT

KEYS

OFOCCH ,CuRSOR FLASH ENABLE

OFOCFH .CURSOR CHARACTER

INDIVIDUAL SUBROUTINES TO PERFORM EACH

FUNCTION

BOOT.-

AA6C 3E20 -, MVl A.20H -:ASCII SPACE

AA6E 32CFF0 STA CURSOR ,SET UP CURSOR

AA71 AF XRA A ;ZERO IN THE ACCUM

AA72 320300 STA IOBYTE .CLEAR THE IOBYTE

AA75 320400 STA CDISK .SELECT DISK ZERO

AA78 32EFAE STA CURDSK .CLEAR VIRTUAL DISK POINTER

AA7B 32E1AE STA HSTACT ;HOST BUFFER INACTIVE

AA7E 32E3AE STA UNACNT iCLEAR UNALLOC COUNT

AA81 3EC3 MVl A,0C3H ,C3 IS JUMP OPCODE

AA83 320000 STA 0+BASE . FOR JUMP TO WBOOT

AA86 2103AA LXI H,WBOOTE ;WBOOT ENTRY POINT

AA89 220100 SHLD 1 + BASE ,SET ADDRESS FIELD

AA8C 320500 STA 5 + BASE ,JUMP TO BDOS OPCODE

AABF 21069C LXI H,BDOS ,BDOS ENTRY POINT

AA92 220600 SHLD 6 + BASE ;SET ADDRESS FIELD

AA95 018000 LXI B,80H + BASE .DEFAULT DMA ADDRESS

AA98 CD2BAD CALL SETDMA

AA9B 11A6AA LXI D.SIGNON ,DE POINTS TO SIGNON MSG

AA9E 0E09 MVl C,9 ;PRINT STRING FUNCTION

AAA0CD0500 CALL ENTRY ;GO TO BDOS

AAA3 C3B9AB JMP GOCPM1 ;GET READY FOR CCP

AAA6 0C0A SIGNON: DB

AAA8 2020202043 DB

AACC 0DOA0A DB

AACF 2020436F70 DB

OCH.0AH ;CLEAR SCREEN

' COMMODORE 64 20K CP/M VERS 2 2'

ODH.0AH.OAH

' COPYRIGHT @ 1979, DIGITAL

RESEARCH',0DH,0AH

218 APPENDIX E



AAF7 2020202020

AB1B 0A24

DB ' COPYRIGHT @ 1982, COMMODORE',0DH,0AH

DB 0AH,
J

$' ;END OF STRING MARKER

WBOOT:

AB1D 318000 LXI SP,80H + BASE ;USE SPACE BELOW BUFFER

FOR STACK

AB20 OEOO MVI C,0 .SELECT DISK

AB22 CDOCAD CALL SELDSK

AB25 AF XRA A ;FORCE DRIVE A

AB26 3204F9 STA DISKNO ABSOLUTELY, POSITIVELY

AB29 CD79AE CALL CHGDSK ,IF NOT ALREADY SELECTED

AB2C CD02AD CALL HOME iGO TO TRACK 00

AB2F 3E0D MVI A,0DH ,CARRIAGE RETURN

AB31 CDAAAC CALL COUT5 ,-OUTPUT IT

AB34 110094 LXI D,CCP ;START OF LOAD

AB37 0616 MVI B,NSECTS

AB39 2601 MVI H,l JRACK NUMBER

AB3B 2E06 MVI L,6 (SECTOR NUMBER

AB3D 7C LOAD1: MOV A,H

AB3E 3203F9 STA TRACK

AB41 7D MOV A,L

AB42 3202F9 STA SECTOR

AB45 3E00 MVI A,VICRD ,DISK READ COMMAND

AB47 CD90AB CALL IO6510

AB4A 3A01F9 LDA DATA

AB4D B7 ORA A

AB4E 20ED Jl DB JRNZ, (LOADl-Jl-2)AND0FFH

AB50 E5 PUSH H

AB51 C5 PUSH B

AB52 010001 LXI B,256

AB55 2100F8 LXI H,HSTBUF ,DISK BUFFER

AB58 ED DB 0EDH ;LDIR INSTRUCTION

AB59 BO DB 0B0H

AB5A 0E2A MVI C/*' ,SHOW IT'S LOADING

AB5C CD76AC CALL CONOUT

AB5F CI POP B

AB60 El POP H

AB61 05 DCR B DECREMENT SECTOR COUNT

appendix e 219



AB62 280B

AB64 2C

AB65 7D

AB66 FEU

AB68 38D3

AB6A 24

AB6B 2E00

AB6D 18CE

J2

J3:

j4:

GOCPM:

AB6F 3EC3 MVI

AB71 320000 STA

AB74 2103AA LXI

AB77 220100 SHLD

DB JRZ.GOCPM-J2-2

INR L ;NEXT SECTOR

MOV A,L

CPI 17

DB JRC, (LOAD1-J3-2) AND OFFH

INR H

MVI L,0

DB JR, (LOAD1 -J4-2) AND OFFH

END OF LOAD OPERATION, SET PARAMETERS AND GO
TO CP/M

A,0C3M ,C3 IS A JMP INSTRUCTION

+ BASE , FOR JMP TO WBOOT

H,WBOOTE ,WBOOT ENTRY POINT

1 + BASE ;SET ADDRESS FIELD FOR JMP AT

AB7A 320500

AB7D 21069C

AB80 220600

STA 5 + BASE

LXI H.BDOS

SHLD 6 + BASE

,FOR JMP TO BDOS

;BDOS ENTRY POINT

,ADDRESS FIELD OF JUMP AT 5 TO

BDOS

AB83 018000

AB86 CD2BAD

LXI B,80H + BASE .DEFAULT DMA ADDRESS IS 80H

CALL SETDMA

AB89 3A0400 GOCPM1: LDA CDlSK ;GET CURRENT DISK NUMBER

AB8C 4F MOV C.A .SEND TO THE CCP

AB8D C30094 JMP CCP ,GO TO CP/M FOR FURTHER

PROCESSING

MAIN ROUTINE TO TRANSFER EXECUTION TO 6510

AB90 3200F9 IO6510: STA CMD ;PUT A IN 6510 COMMAND

REGISTER

AB93 3E01 MVI A.OFF

AB95 3200CE STA MODESW ;TURN OFF Z80

AB98 00 NOP jREQUIRED BY HARDWARE

AB99 C9 RET

220 APPENDIX E



AB9A 2A66AA

AB9D 7C

AB9E B5

AB9F 3EFF

ABA1 CO

CONST CONSOLE STATUS, RETURN OFFH IF CHARACTER READY,

00H IF NOT

LHLD MSGPTR ,MESSAGE MODE'

A,HMOV

ORA

MVI

RNZ

L

A,0FFH ,DATA READY FLAG

,RETURN IF MSGPTROO

ABA2 3A65AA

ABA5 A7

ABA6 CO

ABA7 3E02

ABA9 CD90AB

LDA

ANA

RNZ

MVI

CALL

CSTAT

A

A,VICIN

IO6510

,ALREADY A CHAR?

,YES IF NOT

,CHECK KEYBOARD COMMAND

ABAC 3A8DF2 LDA SHFTST ,GET STATUS OF CONTROL KEYS

ABAF E602 ANI 02H ,CHECK FOR COMMODORE KEY

ABB1 2810 J5. DB JRZ. CONST0-J5-2 :JUMPIF NOT PRESSED

ABB3 3A64AA

ABB6 A7

ABB7 200A

ABB9 3A33AA

ABBC EE01

ABBE 3233AA

ABC1 3E01

ABC3 3264AA

LDA

ANA

J6. DB

LDA

XRI

STA

MVI

CONST0: STA

TOGGLE ;IS THIS AN UPSTROKE'

A

JRNZ,CONST0-J6-2 ,NO WAITING TO

RELEASE

KYBDMD ;GET CAPS MODE FLAG

01 H JOGGLE MODE BIT

KYBDMD

A.l

TOGGLE

ABC6 3A05F9 LDA KYCHAR ,GET SCANNED DATA

ABC9 FE3A CPl 3AH .BAD CONTROL DATA

ABCB 280A J7: DB J RZ,CONST 1 -J7-2

ABCD FE3D

ABCF 2806 J8.

CPI 3DH ;BAD CONTROL DATA

DB JRZ,CONSTl-J8-2

ABD1 2163AA

ABD4 BE

ABD5 2005 J9:

LXI H,LASTKY ;COMPARE WITH PREVIOUS

CMP M ; SCAN DATA

DB JRNZ,CONST2-J9-2 ,IF DIFFERENT, NEW KEY

APPENDIX E 221



ABD7 AF CONST1

:

XRA A ,DATA NOT READY FLAG

ABD8 3265AA STA CSTAT ;SAVE FOR LATER

ABDB C9 •RET

ABDC F5 CONST2: PUSH PSW

ABDD01F401 LXI B,500

ABEO OB CONST3: DCX B ,-DELAY FOR KEYBOUNCE

ABE1 79 MOV A,C

ABE2 BO ORA B

ABE3 20FB J10= DB JRNZ,(CONST3-J10-2) AND OFFH

ABE5 3E02 MVI A,VICIN ,GET CHARACTER AGAIN

ABE7 CD90AB CALL IO6510

ABEA Fl POP PSW

ABEB 2105F9 LXI H,KYCHAR

ABEE BE CMP M

ABEF 20E6 Jll: DB JRNZ,(CONSTl-Jl 1-2) AND OFFH ;IF<>0,

BOUNCING

ABF1 3263AA STA LASTKY ;UPDATE LAST KEY

ABF4 FE40 CPI 40H ,-IF 40H, NO KEY PRESSED

ABF6 28DF J12: DB IRZ,CONSTl-J12-2) AND OFFH

ABF8 3EFF MVI A,0FFH ;DATA READY FLAG

ABFA 3265AA STA CSTAT ,-SAVE FOR LATER

ABFD C9 RET

CONIN: ,-CONSOLE CHARACTER INTO REGISTER A

ABFE 3E00 MVI A,0 ,TURN ON CURSOR

ACOO 32CCF0 STA FLASH

AC03 2A66AA

AC06 7C

AC07 B5

AC08 2044 J13:

LHLD MSGPTR ;ARE WE IN MESSAGE MODE?

MOV A,H

ORA L

DB JRNZ.CONIN5-J13-2

AC0ACD9AAB CONIN1. CALL CONST ;CHECK CONSOLE STATUS

ACOD B7 ORA A

ACOE 28FA J14- DB JRZ.(CONINl-J14-2) AND OFFH ,-UNTIL NEW

222 APPENDIX E



CHAR

AC10 AF XRA A

AC11 3265AA STA CSTAT CLEAR CSTAT

AC14 3A33AA CONIN2 LDA KYBDMD UNSHIFT = 0, CAPS = 1

AC17 47 MOV B,A

AC18 3A8DF2 LDA SHFTST GET MODIFIER STATUS

AC1B E601 ANI 01H IS A SHIFT KEY DOWN?

ACID 2802 J15 DB JRZ,CONIN3-J15-2 ;JUMP IF NO

AC1F 0602 MVI B,2 SHFIT = 2

AC21 3A8DF2 CONIN3 LDA SHFTST GET MODIFIER STATUS

AC24 E604 ANI 04H IS THE CONTROL KEY DOWN?

AC26 2802 J16: DB JRZ,CONIN4-J16-2 ,JUMP IF NO

AC28 0603 MVI B,3 •CONTROL = 3

AC2A 3A63AA CONIN4. LDA LASTKY •GET KEY POSITION

AC2D 87 ADD A •*2

AC2E 87 ADD A •*4

AC2F 80 ADD B •ADD IN OFFSET

AC30 2A68AA LHLD TBLPTR •GET BEGINNING OF KEYTBL

AC33 85 ADD L •VECTOR INTO TABLE

AC34 6F MOV L,A

AC35 3E00 MVI A,0

AC37 8C ADC H

AC38 67 MOV H,A

AC39 7E MOV A,M GET CHARACTER FROM TABLE

AC3A FE80 CPI 80H MESSAGE IF >7FH

AC3C 3820 J17: DB JRCCONIN7 -J 17-2 ,JUMP IF ASCII CHAR

AC3E 2A6AAA LHLD MSGTBI .GET BEGINNING OF MVTBL

AC41 E67F ANI 7FH ;STRIP OF MESSAGE BIT

AC43 87 ADD A ,*2

AC44 85 ADD L ;VECTOR INTO TABLE

AC45 6F MOV L,A

AC46 3E00 MVI A,0

AC48 8C ADC H

AC49 67 MOV H,A

AC4A 7E MOV A,M ,LOW ORDER BYTE

AC4B 23 INX H

AC4C66 MOV H,M ,HIGH ORDER BYTE

APPENDIX E 223



,GET CHARACTER

.CHECK NEXT CHARACTER

AC4D 6F MOV L,A

AC4E 46 CONIN5: MOV B,M

AC4F 23 INX H

AC50 7E MOV A,M

AC51 A7 ANA A

AC52 2003 J18: DB JRNZ,CONIN6-J18-2 ,IF 0, B HAS LAST CHAR

AC54 210000

AC57 2266AA

AC5A 78

AC5B A7

AC5C 28AC

AC5E F5

AC5F 3E01

AC61 32CCF0

AC64 2AD1F0

AC67 3AD3F0

AC6A 85

AC6B 6F

AC6C 3EF0

AC6E 8C

AC6F 67

AC70 7E

AC71 E67F

AC73 77

AC74 Fl

AC75 C9

CONIN6

J19:

LXI

SHLD

MOV

ANA

DB

CONIN7. PUSH

MVI

STA

LHLD

LDA

ADD

MOV

MVI

ADC

MOV

MOV

ANI

MOV

POP

RET

H.0000H ,END OF MESSAGE MODE

MSGPTR ,SAVE MESSAGE POINTER

A.B ,CHECK CHARACTER

A ;MAYBE1STIS0

JRZ,(CONINl-J19-2) ND 0FFH ,IF<>0, NOT

PSW

A,l

FLASH

0F0D1H

0F0D3H

L

LA

A,0F0H

H

H,A

A,M

07FH

M,A

PSW

CHAR

,SAVE CHARACTER

/TURN OFF CURSOR

,GET CHARACTER

;DONE

CONOUT: (CONSOLE CHARACTER OUTPUT FROM REGISTER C

AC76 3AFFFC LDA IOTYPE ;GET CONFIGURATION BYTE

AC79 E601 ANI 10H ,BIT 4 = 1 TO IGNORE FILTER

AC7B 79 MOV A,C ;GET TO ACCUMULATOR

AC7C 202C J20 DB JRNZ.COUT5-J20-2 ,PRINT AS RECEIVED

AC7E CDDAAC

AC81 FE0C

AC83 2004

AC85 3E93

J21-

CALL SWAP EXCHANGE UPPER AND LOWER

CASE

CPI 0CH .ASCII CLEAR SCREEN?

DB JRNZ,COUTl-J21-2 ,-JUMP IF NO

MVI A,93H ,-COMMODORE CLEAR SCREEN

CMD

224 APPENDIX E



AC87 1821 J22: DB JR,COUT5-J22-2

AC89 FE08 COUT1 : CPI 08H .ASCII BACKSPACE'

AC8B 2004 J23: DB JRNZ.COUT2-J23-2 ;JUMP IF NO

AC8D 3E14

AC8F 1819 J24:

MVI A,14H ,-COMMODORE BACKSPACE CMD

DB JR,COUT5-J24-2

AC91 FEOA

AC93 2004

COUT2: CPI

J25: DB

OAH ,UNE FEED?

JRNZ,COUT3-J25-2

AC95 3E11

AC97 1811 J26:

MVI A, 17 /COMMODORE LINE FEED

DB JR,COUT5-J26-2

AC99 FEOD COUT3: CPI ODH /CARRIAGE RETURN?

AC9B 2007 J27: DB JRNZ,COUT4-J27-2

AC9D CDAAAC

ACAO 3E91

ACA2 1806 J28:

CALL COUT5

MVI A, 145 ,UP 1 LINE TO NEGATE AUTO IF

DBB JR,COUT5-J28-2

ACM FE20

ACA6 D8

ACA7 FE80

COUT4= CPI

RC

CPI

20H

80H

/RETURN IF UNDECODED

CONTROL CHAR

ACA9 DO RNC ;RETURN IF NOT ASCII

CHARACTER

ACAA3201F9 COUT5 STA DATA ,PUT DATA IN CHARACTER

REGISTER

ACAP 3E03 MVI A,VICOUT /SCREEN OUTPUT COMMAND

ACAF 181

D

J29- DB JR.LIST3-J29-2

LIST: ,-llST CHARACTER FROM REGISTER C

ACB1 3AFFFC LDA IOTYPE ;WHAT KIND OF PRINTER'

ACB4 E604 ANI 04H ,0 IF 1515, 1 IF 4022

ACB6 79 MOV A,C CHARACTER TO REGISTER A

ACB7 2010 J30: DB JRNZ,LIST2-J30-2 ,JUMP IF NO SWAP

ACB9 3AFFFC

ACBC E608

LDA

ANI

IOTYPE

08H ,WHICH TYPE OF SWAP'

APPENDIX E 225



ACBE 79

ACBF 2005 J31:

MOV A,C ;GET CHARACTER

DB JRNZ,LISTl-J31-2

ACC1 CDDAC

ACC4 1803 J32-.

CALL SWAP :SWAP UPPER AND LOWER CASE

DB JR,LIST2-J32-2

ACC6 CDEDAC

ACC9 3201F9

ACCC 3E05

ACCE C390AB

LIST1:

L1ST2:

LISTS-

CALL SWAP2

STA DATA

MVI A.VICPRT

JMP IO6510

,4022 SWAP ROUTINE

,PUT DATA IN REGISTER

,ASSUME 1540

LISTST: ,RETURN LIST STaTuS (0 IF NOT READY, 1 IF READY)

ACD1 3E04 MVI A.VICPST ;PRINTER STATUS COMMAND

ACD3CD90AB CALL IO6510

ACD6 3A01F9 LDA DATA ;DATA IS STATUS

ACD9 C9 RET

ACDA FE41 CPI

ACDC D8 RC

ACDD FE5B CPI

ACDF 3809 J33- DB

ACE1 FE61 CPI

ACE3 D8 RC

ACE4 FE7B CPI

ACE6 DO RNC

ACE7 E65F ANI

ACE9 C9 RET

ACEA F620 SWAP1. ORI

ACEC C9 RET

ACED FE41 SWAP2: CPI

ACEF D8 RC

ACFO FE60 CPI

ACF2 3003 J34: DB

SWAP- ;SWAP UPPER AND LOWER CASE FOR COMMODORE-64

41 H ; LESS THAN UC 'A?

,-RETURN IF SO

5BH ;UC LETTER?

JRC,SWAPl-J33-2 ;JUMPIFSO

61H

7BH

5FH

20H

41

H

,LESS THAT LC 'A'

,RETURN IF SO

;LC LEnER?

,-RETURN IF NO

,TURN OFF BIT 5

;
TURN ON BIT 5

=CY IF LESS THAN UC 'A

60H ;CY IF 40H < A < 60H

JRNCSWAP3-J34-2

226 APPENDIX E



ACF4 F680 ORI

ACF6 C9 RET

ACF7 E65F SWAP3: ANI

ACF9 C9 RET

80H

5FH

ACFA 79

ACFB 00

ACFC C9

PUNCH: ,PUNCH CHARACTER FROM REGISTER C

MOV A,C CHARACTER TO REGISTER A

NOP

RET ;NULL SUBROUTINE

READER, ,READ CHARACTER INTO REGISTER A FROM READER

DEVICE

ACFD3E1A MVI A,1AH ,ENTER END OF FILE FOR NOW
(REPLACE LATER)

ACFF E67F ANI 7FH ,-REMEMBER TO STRIP PARITY BIT

AD01 C9 RET

*******************

CP/M TO HOST DISK CONSTANTS

****** ********
0400 = BLKSIZ EQU 1024

0100 = HSTSIZ EQU 256

0011 = HSTSPT EQU 17

0002 = HSTBLK EQU HSTS

0022 = CPMSPT EQU HSTB

0001 = SECMSK EQU HSTB

0001 = SECSHF EQU 1

,-CP/M ALLOCATION SIZE

,HOST DISK SECTOR SIZE

,HOST DISK SECTORS/TRK

HSTSIZ/128 ;CP/M SECTS/HOST BUFF

HSTBLK * HSTSPT ;CP/M SECTORS/TRACK

;SECTOR MASK

;LOG2(HSTBLK)

.***** * * * ******

BDOS CONSTANTS ON ENTRY TO WRITE

* * *

0000

0001

0002

***** ******
WRALL EQU

WRDIR EQU 1

WRUAL EQU 2

,WRITE TO ALLOCATED

,WRITE TO DIRECTORY

,WRITE TO UNALLOCATED

APPENDIX E 227



AD02 3AE2AE

AD05 B7

AD06 2003

AD08 32E1AE

ADOB C9

HOME:

J35.

HOMED:

HOME THE SELECTED DISK

IDA HSTWRT .CHECK FOR PENDING WRITE

ORA A

DB JRNZ,HOMED-J35-2

STA HSTACT ,CLEAR HOST ACTIVE FLAG

RET

SELDSK:

;SELECT DISK

ADOC 210000 LXI H,0000H ERROR RETURN CODE

ADOF 79 MOV A,C SELECTED DISK NUMBER

AD10 32D8AE STA SEKDSK SEEK DISK NUMBER

AD 13 FE02 CPI 2 MUST BE 0-1

AD15 DO RNC NO CARRY IF 2,3,

AD16 6F MOV L,A DISK NUMBER TO HL

AD17 29 DAD H MULTIPLY BY 16

AD18 29 DAD H

AD19 29 DAD H

AD1A29 DAD H

AD1B 1134AA LXI D,DPBASE BASE OF PARM BLOCK

AD1E 19 DAD D HL=.DPB(CURDSK)

AD1F C9 RET

SETTRK;

AD20 60

AD21 69

AD22 22D9AE

AD25 C9

,SET TRACK GIVEN BY REGISTERS BC

MOV H,B

MOV L,C

SHLD SEKTRK ;TRACK TO SEEK

RET

AD26 79

AD27 32DBAE

AD2A C9

SETSEC:

;SET SECTOR GIVEN BY REGISTER C

MOV A,C

STA SEKSEC ,SECTOR TO SEEK

RET

SETDMA:

;SET DMA ADDRESS GIVEN BY BC

22B APPENDIX E



AD2B 60 MOV H,B

AD2C 69 MOV L,C

AD2D 22ECAE SHLD DMAADR

AD30 C9 RET

SECTRAN.

TRANSLATE SECTOR NUMBER BC

AD31 60 MOV H,B

AD32 69 MOV L,C

AD33 C9 RET

AD34 AF

AD35 32E3AE

AD38 3E01

AD3A 32EAAE

AD3D 32E9AE

AD40 3E02

AD42 32EBAE

AD45 1864

******** *******

READ:

THE READ ENTRY POINT TAKES THE PLACE OF

THE PREVIOUS BIOS DEFINITION FOR READ.

J36:

,READ THE SELECTED CP/M SECTOR

XRA A

STA UNACNT

MVI A,l

STA READOP ;READ OPERATION

STA RSFLAG ;MUST READ DATA

MVI A,WRUAL

STA WRTYPE ,TREAT AS UNALLO

DB JR,RWOPER-J36 -2 ,TO PERR

AD47 AF

AD48 32EAAE

AD4B 79

AD4C 32EBAE

AD4F FF02

****** ***** * * * *

THE WRITE ENTRY POINT TAKES THE PLACE OF

THE PREVIOUS BIOS DEFINITION FOR WRITE.

WRITE:

* * * * * * *

;WRlTE THE SELECTED CP/M SECTOR

XRA A ,0 TO ACCUMULATOR

STA READOP ,NOT A READ OPERATION

;WRITE TYPE IN CMOV A,C

STA WRTYPE

CPI WRUAL ;WRITE UNALLOCATED?

APPENDIX E 229



AD51 2017 J37 : DB JRNZ,CHKUNA-J37-2 ,-CHECK FOR UNALLOC

WRITE TO UNALLOCATED, SET PARAMETERS

AD53 3E08 MVI A,BLKSIZ/128;NEXT UNALLOC RECS

AD55 32E3AE STA UNACNT

AD58 3AD8AE LDA SEKDSK ,DISK TO SEEK

AD5B 32E4AE STA UNADSK ,UNADSK = SEKDSK

AD5E 2AD9AE LHLD SEKTRK

AD61 22E5AE SHLD UNATRK ,UNATRK = SECTRK

AD64 3ADBAE LDA SEKSEC

AD67 32E7AE STA UNASEC ,UNASEC = SEKSEC

AD6A 3AE3AE

AD6D B7

AD6E 2833

CHKUNA.

J38:

;CHECK FOR WRITE TO UNALLOCATED SECTOR

LDA UNACNT :ANY UNALLOC REMAIN?

ORA A

DB JRZ,ALLOC-J38-2 ;SKIP IF NOT

AD70 3D DCR

AD71 32E3AE STA

AD74 3AD8AE LDA

AD77 21E4AE LXI

AD7A BE CMP

AD7B 2026 J39: DB

MORE UNALLOCATED RECORDS REMAIN

A ,UNACNT = UNACNT-1

UNACNT

SEKDSK ;SAME DISK?

H.UNADSK

M .SEKDSK = UNADSK?

JRNZ,ALLOC-J39-2 ;SKIP IF NOT

AD7D 21 E5AE

AD80 CD40AE

AD83 201

E

HO-

DISKS ARE THE SAME

LXI H, UNATRK

CALL TRKCMP .SEKTRK = UNATRK?

DB JRNZ.ALLOC-J40-2 ,SKIP IF NOT

AD85 3ADBAE

AD88 21E7AE

AD8B BE

AD8C 2015 J41 ;

TRACKS ARE THE SAME

LDA SEKSEC ,-SAME SECTOR'

LXI H.UNASEC

CMP M ;SEKSEC = UNASEC?

DB JRNZ,ALLOC-J41-2 ,SKIP IF NOT

AD8E 34

AD8F 7E

MATCH, MOVE TO NEXT SECTOR FOR FUTURE REF

INR M ,UNASEC = UNASEC +1

MOV A,M ;END OF TRACK?

230 APPENDIX E



AD90 FE22

AD92 3809 J42:

CPI CPMSPT ,COuNT CP/M SECTORS

DB JRCNOOVF-J42-2 ,SKIP IF NO OVERFLOW

AD94 3600

AD96 2AE5AE

AD99 23

AD9A 22E5AE

OVERFLOW TO NEXT TRACK

MVI M,0 jUNASEC =

LHLD UNATRK

INX H

SHLD UNATRK ,-UNATRK = UNATRK + 1

NOOVF;

;MATCH FOUND, MARK AS UNNECESSARY READ

AD9DAF XRA A ;0 TO ACCUMULATOR

AD9E 32E9AE STA RSFLAG ;RSFLAG =

ADA1 1808 J43: DB JR,RWOPER-J43-2 ;TO PERFORM THE WRITE

ALLOC:

;NOT AN UNALLOCATED RECORD, REQUIRES PRE-READ

ADA3 AF XRA A ,0 TO ACCUM

ADA4 32E3AE STA UNACNT ,UNACNT =

ADA7 3C INR A ;1 TO ACCUM

ADA8 32E9AE STA RSFLAG ,RSFLAG = 1

******************
*

COMMON CODE FOR READ AND WRITE FOLLOWS
*

******************
RWOPER:

,-ENTER HERE TO PERFORM THE READ/WRITE

ADAB AF XRA A ;ZERO TO ACCUM

ADAC 32E8AE STA ERFLAG jNOERRORS (YET)

ADAF 3ADBAE LDA SEKSEC ,COMPUTE HOST SECTOR

ADB2 B7 ORA A ;CARRY =

ADB3 IF RAR ;SHIFT RIGHT

ADB4 32E0AE STA SEKHST ;HOST SECTOR TO SEEK

ADB7 21E1AE

ADBA 7E

ADBB 3601

ADBD B7

ACTIVE HOST SECTOR?

LXI H,HSTACT ,-HOST ACTIVE FLAG

MOV A,M

MVI M,l ,ALWAYS BECOMES 1

ORA A ,WAS IT ALREADY?

APPENDIX E 231



ADBE 2821 J44: DB JRZ.FILHST-J44-2 ,FILL HOST IF NOT

ADCO 3AD8AE

ADC3 21 DCAE

ADC6 BE

ADC7 201

1

J45:

HOST BUFFER ACTIVE, SAME AS SEEK BUFFER'

LDA SEKDSK

LXI H,HSTDSK ;SAME DISK?

CMP M ;SEKDSK = HSTDSK?

DB JRNZ,NOMTCH-J45-2

ADC9 21DDAE

ADCC CD40AE

ADCF 2009 J46.

SAME DISK, SAME TRACK?

LXI H,HSTTRK

CALL TRKCMP ;SEKTRK = HSTTRK?

DB JRNZ,NOMTCH-J46-2

ADD1 3AE0AE

ADD4 21DFAE

ADD7 BE

ADD8 2824 J47.

SAME DISK, SAME TRACK, SAME BUFFER?

LDA SEKHST

LXI H,HSTSEC ;SEKHST = HSTSEC?

CMP M

DB JRZ,MATCH-J47-2 .SKIP IF MATCH

ADDA 3AE2AE

ADDD B7

ADDE C44CAE

NOMTCH.

;PROPER DISK, BUT NOT CORRECT SECTOR

LDA HSTWRT ,HOST WRITTEN?

ORA A

CNZ WRHST ,CLEAR HOST BUFF

FILHST:

;MAY HAVE TO FILL THE HOST BUFFER

ADE1 3AD8AE LDA SEKDSK

ADE4 32DCAE STA HSTDSK

ADE7 2AD9AE LHLD SEKTRK

ADEA 22DDAE SHLD HSTTRK

ADED 3AE0AE LDA SEKHST

ADFO 32DFAE STA HSTSEC

ADF3 3AE9AE LDA RSFLAG ;NEED TO READ?

ADF6 B7 ORA A

ADF7 C49DAE CNZ RDHST ,-YES, IN 1

^DFA AF XRA A ;0 TO ACCUM

ADFB 32E2AE STA HSTWRT ;NO PENDING WRITE

MATCH:

,COPY DATA TO OR FROM BUFFER

232 APPENDIX E



ADFE 3ADBAE LDA SEKSEC ,-MASK BUFFER NUMBER

AE01 E601 ANI SECMSK ,LEAST SIGNIF BITS

AE03 6F MOV L,A (READY TO SHIFT

AE04 2600 MVI H,0 ;DOUBLE COUNT

AE06 29 DAD H ;SHIFT LEFT 7

AE07 29 DAD H

AE08 29 DAD H

AE09 29 DAD H

AEOA 29 DAD H

AEOB 29 DAD H

AEOC 29 DAD H

HL HAS RELATIVE HOST BUFFER ADDRESS

AEOD U00F8 LXI D,HSTBUF

AE10 19 DAD D ;HL = HOST ADDRESS

AE11 EB XCHG ;NOW IN DE

AE12 2AECAE LHLD DMAADR ;GET/PUT CP/M DATA

AE15 0E80 MVI C,128 ,LENGTH OF MOVE

AE17 3AEAAE LDA READOP ,-WHICH WAV
AE1A B7 ORA A

AE1B 2006 J48: DB JRNZ,RWMOVE-J48-2 ;SKIP IF READ

AE1D 3E01

AE1F 32E2AE

AE22 EB

WRITE OPERATION, MARK AND SWTCH DIRECTION

MVI A,l

STA HSTWRT ;HSTWRT = 1

XCHG ,SOURCE/DEST SWAP

RWMOVE-

AE23 1A

AE24 13

AE25 77

AE26 23

AE27 0D

AE28 20F9 J49-

,C INITIALLY 128, DE IS SOURCE, HL IS DEST

LDAX D ,-SOURCE CHARACTER

INX D

MOV M,A ,TO DEST

INX H

DCR C ,LOOP 128 TIMES

DB JRNZ,(RWMOVE-J49-2) AND OFFH

DATA HAS BEEN MOVED TO/FROM HOST BUFFER

AE2A 3AEBAE

AE2D FE01

AE2F 3AE8AE

AE32 CO

LDA WRTYPE

CPI WRDIR

LDA ERFLAG

RNZ

WRITE TYPE

TO DIRECTORY?

IN CASE OF ERRORS

NO FURTHER PROCESSING

CLEAR HOST BUFFER FOR DIRECTORY WRITE

APPENDIX E 233



AE33 B7 ORA A ,ERRORS?

AE34 CO RNZ ,SK|P IF SO

AE35 AF XRA A ,0 TO ACCUM

AE36 32E2AE STA HSTWRT ,-BUFFER WRITTEN

AE39 CD4CAE CALL WRHST

AE3C 3AE8AE LDA ERFLAG

AE3F C9 RET

AE4C 3E01

AE4E 32EEAE

************** * * * *

UTILITY SUBROUTINE FOR 16-BIT COMPARE

*******
TRKCMP,

,HL = .UNATRK OR .HSTTRK, COMPARE WITH SEKTRK

AE40 EB XCHG

AE41 21D9AE LXI H,SEKTRK

AE44 1A LDAX D :LOW BYTE COMPARE

AE45 BE CMP M ,SAME?

AE46 CO RNZ /RETURN IF NOT

LOW BYTES EQUAL, TEST HIGH IS

AE47 13 INX D

AE48 23 INX H

AE49 1A LDAX D

AE4A BE CMP M ;SETS FLAGS

AE4B C9 RET

WRHST PERFORMS THE PHYSICAL WRITE TO

THE HOST DISK, RDHST READS THE PHYSICAL

DISK.

WRHST:

;HSTDSK = HOST DISK #, HSTTRK = HOST TRACK #,

,-HSTSEC = HOST SECT #. WRITE "HSTSIZ" BYTES

;FROM HSTBUF AND RETURN ERROR FLAG IN ERFLAG.

.RETURN ERFLAG NON-ZERO IF ERROR

MVI A,VICWR ;LOAD DISK WRITE COMMAND
WRHSTO: STA RW ,PUT COMMAND IN REGISTER

234 APPENDIX E



AE51 3ADCAE LDA HSTSDK ;GET HOST DISK NUMBER

AE54 3204F9 STA DISKNO ; AND PUT IN COMMON AREA

AE57 CD79AE CALL CHGDSK ;CORRECT VIRTUAL DISK?

AE5A 3ADDAE WRHST2: LDA HSTTRK •GET HOST TRACK NUMBER

AE5D 3C INR A ;ADD 1 FOR VIC OFFSET

AE5E FEU CPI 18 ;WE WANT TO SKIP TRACK 18

AE60 3801 J50: DB JRCWRHST3-J50-2 ;CARRY IF TRACK<18

AE62 3C INR A

AE63 3203F9 WRHST3- STA TRACK •PUT IN COMMON AREA

AE66 3ADFAE LDA HSTSEC ,GET HOST SECTOR NUMBER

AE69 3202F9 STA SECTOR ;PUT IN COMMON AREA

AE6C 3AEEAE LDA RW ;GET DISK COMMAND

AE6F CD90AB CALL IO6510

AE72 3A01F9 LDA DATA ;GET DISK STATUS

AE75 32E8AE STA ERFLAG • AND STORE IN ERFLAG

AE78 C9 RET

AE79 67 CHGDSK: MOV H,A SAVE DISK NUMBER

AE7A 3AFFFC LDA IOTYPE BIT = FOR VIRTUAL

AE7D E601 ANI 01

AE7F CO RNZ NOT ZERO IF 2 DRIVES

AE80 3204F9 STA DISKNO FORCE DRIVE A

AE83 7C MOV A,H RESTORE DISK NUMBER

AE84 21EFAE LXl M,CURDSK is this our current disk?

AE87 BE CMP M
AE88 C8 RZ RETURN IF OK

AE89 77 MOV M,A SET UP NEW DISK

AE8A C641 ADI 'A' FORM ASCII DRIVE LETTER

AE8C 32AFAE STA DSKMNT PUT IN MESSAGE

AE8F 21A1AE LXl H,MNTMSG INSERT DISK MESSAGE

AE92 CDCCAE CALL PMSG GO PRINT IT

AE95 CDFEAB CHGDli CALL CONIN WAIT FOR RETURN

AE98 FEOD CPI ODH

AE9A 20F9 J51: DB JRNZ,(CHGD -J51-2)AND0FFH

AE9C C9 RET

RDHST-

;HSTDSK = HOST DISK #, HSTTRK = HOST TRACK #,

;HSTSEC = HOST SECT #. READ "HSHSIZ" BYTES

APPENDIX E 235



AE9D 3E00

AE9F 18AD J52

,INTO HSTBUF AND RETURN ERROR FLAG IN ERFLAG.

MVI A,VICRD ;DISK READ COMMAND
DB JR,(WRHST0-J52-2) AND OFFH ,REST LIKE

WRITE

AEA1 0D0A496E73 MNTMSG : DB 0DH,0AH,'INSERT DISK'

AEAF 41 DSKMNT: DB 'A'

AEBO 20696E746F DB ' INTO DRIVE 0, PRESS RETURN

AECB 00 DB 00H

AECC 7E PMSG: MOV A,M

AECD A7 ANA A

AECE C8 RZ

AECF E5 PUSH H

AEDO 4F MOV C,A

AED1 CD76AC CALL CONOUT

AED4 El POP H

AED5 23 INX H

AED6 18F4 J53- DB JR,(PMSG-J53-2) AND OFFH

******************

UNINITIALIZED RAM DATA AREAS

*****************
AED8 SEKDSK: DS ,SEEK DISK NUMBER

AED9 SEKTRK: DS 2 ;SEEK TRACK NUMBER

AEDB SEKSEC- DS
;SEEK SECTOR NUMBER

AEDC HSTDSK: DS ,HOST DISK NUMBER

AEDD HSTTRK. DS 2 ,HOST TRACK NUMBER

AEDF MSTSEC: DS ;HOST SECTOR NUMBER

AEEO SEKHST: DS ,SEEK SHR SECSHF

AEE1 HSTACT: DS ,HOST ACTIVE FLAG

AEE2 HSTWRT: DS ,riOST WRinEN FLAG

AEE3 UNACNT. DS jUNALLOC REC CNT

AEE4 UNADSK: DS ;LAST UNALLOC DISK

AEE5 UNATRK: DS 2 ,LAST UNALLOC TRACK

236 APPENDIX E



AEE7

AEE8

AEE9

AEEA

AEEB

AEEC

AEEE

AEEF

UNASEC: DS 1

ERFLAG. DS 1

RSFLAG: DS 1

READOP DS 1

WRTYPE: DS 1

DMAADR: DS 2

RW: DS 1

CURDSK: DS 1

,LAST UNALLOC SECTOR

,ERROR REPORTING

,READ SECTOR FLAG

;1 IF READ OPERATION

,WRITE OPERATION TYPE

;LAST DMA ADDRESS

.TEMPORARY COMMAND
REGISTER

;VIRTUAL DISK POINTER

SCRATCH RAM AREA FOR BDOS USE

AEFO = BEGDAT EQU $ 'BEGINNING OF DATA AREA

AEFO DIRBF: DS 128 SCRATCH DIRECTORY AREA

AF70 ALLOO: DS 31 .ALLOCATION VECTOR

AF8F ALL01

:

DS 31 ALLOCATION VECTOR 1

AFAE CHK00- DS 16 ,CHECK VECTOR

AFBE CHK01: DS 16 ,CHECK VECTOR 1

AfcE = ENDDAT EQU $ ,-END OF DATA AREA

OODE = DATSIZ EQU $-BEGDAT ;SIZE OF DATA AREA

AFCE END

APPENDIX E 237



ABOUT THE COMMODORE 64 CP/M
OPERATING SYSTEM USER'S GUIDE..

The Commodore Z80 microprocessor and CP/M* operating

system let you turn your Commodore 64 into a dual

processor home microcomputer.

CP/M" lets you use more than 15,000 CP/M" application

programs. CP/M" software includes widely used business

applications such as financial reporting and analysis,

investment planning, word processing, farm and restaurant

management, data base, exotic language compilers, and
much, much more.

The Commodore 64 CP/M * Operating System User's Guide

tells you how to use the Z80 cartridge and the CP/M"
operating system. This manual gives you detailed information

on how to bring up CP/M* on your system. We also give you
a detailed reference section with descriptions of all the

CP/M® commands and utility programs.

For the beginner, this manual offers simple, step-by-step

instructions with all the information you need to use CP/M*

on your Commodore 64,

For the advanced user, this manual provides detailed

information on the technical workings of CP/M" on your

Commodore 64 and the engineering details of your Z80
cartridge.

This manual is written in an easy-to-read style and is

designed to help you get the most out of the Z80
microprocessor and the CP/M" operating system.

ftcommodorev
COMPUTER

Commodore Business Machines, Inc.— Computer Systems Division.

950 Airport Rd. West Chester, PA 1 9380

DISTRIBUTED BY

Howard ID. Sams & Co., Inc.
4300 W. 62nd Street, Indianapolis, Indiana 46268 USA

$12.95/22098 ISBN: 0-672-22098-9


